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ABSTRACT: This paper analyzes Local Projection Stabilization (LPS) methods for the solution of
Stokes problem using equal order finite elements. Their convergence, stability and accuracy
properties are investigated. The resulting stabilized method is shown to lead to optimal rates of
convergence for both velocity and pressure approximations. Two classes of LPS methods are
distinguished: one-level and two-level methods. Numerical examples using bilinear interpolations are
presented to validate the analysis and assess the accuracy of both approaches.
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1. Introduction

Numerical approximations of incompressible flows require a compatibility condition between the discrete
velocity and pressure spaces (Girault and Raviart, 1986; Brezzi and Fortin (1991)). This condition prevents,
in particular, the use of equal order interpolation spaces for the two variables, which is the most attractive choice
from a computational point of view. The two-level local projection technique has been introduced by Becker and
Braack (2001) and Nafa (2008) to circumvent the inf-sup condition and to allow the use of simple equal order

interpolations such as Pl-pland Q1 —Q1 velocity-pressure approximations.
This method consists in introducing the L2 -projection of the pressure gradient as a new unknown of the
problem. Hence, a third equation to enforce the projection property is added to the original discrete equations,
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and a weighted difference of the pressure gradient and its local projection is introduced into the continuity
equation.

In this paper we analyze the LPS and distinguish two classes of LPS methods: The one-level enriched
method and the two-level method. The stability and error estimate results presented here are more general than
those given in Becker and Braack (2001). In fact, the proofs extend the stability and error estimate results of
Becker and Braack (2001) and Nafa (2008) to the one-level enriched approximation case. Numerical results are
presented to justify the order of convergence and assess the performance accuracy of both LPS methods using
bilinear finite element interpolation.

2. Discrete Stokes problem

Let QO denote an open, bounded, connected subset of SRZ, where 0Q denotes its Lipschitz continuous
boundary. Let

felH ‘1(9)}2, vz[Hé(Q)T, and Q =L3(Q).
We consider the usual Stokes problem with homogeneous Dirichlet boundary conditions. Find
(up)eVxQ satisfying
vAuU+Vp=f in Q
Vu=0 in Q (1)
u=0 on 0Q
where LS (Q) is the set of square integrable functions with null average.
The weak formulation of the above problem reads
v(Vu,w)—(p,Vv)+(q,Vu)=(f,v) 2
for all test functions (v,q)erQ where () denotes the L? -inner product on the region Q. The compact

form of the weak formulation of (1) is given by
B(up;v.q)=F(v.q), ¥(v.q)eVxQ 3)
where
B (u,p;v,q)=v(Vu,vv)-(p,V.v)+(q,Vu)
and
F(v.a)=(fv)

3. Local projection stabilization

Let Ty, be a shape regular partition of the region Q into quadrilateral elements K, and assume V;, and Q
are finite dimensional subspaces of V and Q respectively, consisting of continuous functions. We denote by hy

the local mesh size, the mesh size is then defined by h = max h, . Then, the Galerkin discrete problem reads
KeTh

B (Un,PniVhGn ) =F (Vh,Gn), Y (Vh,dh )€ Vi xQp. 4)

Let M}, be a coarser mesh partition of the domain into quadrilateral elements M which are defined as the

union of one or more neighboring elements K of the partition Ty,. We assume that the partition of Q into
macro-elements M € M, is non-overlapping, shape regular and such that
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hy =hg, YK M, YM eMy
where hi and hy, denote the maximum diameter of K and M, respectively.
LetY, cH l(Q) be a scalar finite element space of continuous, piecewise polynomial functions over Ty,.
Since we are interested in the case of equal order interpolation, we define the approximation spaces as follows
Vi, =Y 2NV, Q, =Y, NQ.
Let Dy, (M) be a discontinuous finite dimensional space defined on the macro-element M e M;,. We
introduce the associated discontinuous global space

L

A
K K

1 1
M f

Figure 1. Reference macro-element (right) and macro-element (left).

Then, we define the equal order approximation finite element spaces of velocity and pressure respectively
by:

Vi ={VG(H3(Q))Z/V|K e(Qr(K) Y, vK eTh}

Qn :{q eH(Q)NLE (Q) /ak €Q, (K), VK eTh}
where, for each integer r>0, Q, (K) denotes standard quadrilateral finite elements by means of a reference

element (as illustrated in Figure 1) as polynomials of degree less or equal to r with respect to each variable.
Further, we define the space of discontinuous functions

D, ={Ah e(LZ(Q))2 I € (Qra(M))

(®)

2 WM th}. 6)

We define the local L2 -projection 7y :L2 (M)—Dy, (M) which generates the global projection
7 L2 (Q) > Dy, by
h (a))hM =\ (@M ), YM eMy, Yoel?(Q).
To which, we associate the fluctuation operator xj, : L2 (Q) — L? () defined as &}, =id —7;,, where id

stands for the identity operator in LZ(Q). For simplicity we use the same notations id, 7y, 7 and «y, for
vector valued functions.

Now, the stabilizing term is defined by

ShB(phth):M ZM am (K VPh. &1 Vah )g - ©)
eMp,

Thus, the LPS discrete problem reads: Find (uy,,py, ) € Vi, xQp, such that
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Bh (Uns PniVhsdh ) =Fn (VhsOh ) V(Vh,On ) € Vi xQp )]
where
Bh (Un, Ph:Vh,Gh ) =B (Un, PhiVh,dn ) +ShB (Ph.dn ), (9a)
and
Fn (Vh,On ) =F (Vh.an) - (9b)
The stabilized formulation given in (8) is written component-wise as
V(Vuh ,Vvh )—( Pn ,V.Vh ) = (f, Vh ) , VVh S Vh (108)
—(an.Vuy) iy ZM am (VP =7 (VPn ), Van )y =0 V0 €Qp (10b)
eMp ’
—M ZM on (VPn =7 (VP ).&n )y =0 V&n D (10c)
eMp

In order to prove the stability and convergence of the solution of the stabilized method given in (8) we
introduce the following assumptions.

Assumption Al. The fluctuation operator satisfies the approximation property
lhalg py <Ch'mlal - YaeH' (M), ¥M eMy,, 0<I<r. (11)

Assumption A2. There exists an interpolation operator i}, : H ! (Q) —Y, such that
ihviH3(Q) Y, NHE(Q) with the error estimates
||v—ihv||0,K +hg |v—ihv|1’K <Chg ||v||S’w(K) (12)

forall veH S (w(K)), and all K €Ty, 1<s <r+1, where o(K )denotes a certain neighborhood of K.

Assumption A3. Further, assume that the local inf-sup condition

inf sup Mzﬂl (13)
dh€Dh (M )vp ey (M )||Vh ||o,M ||qh||o,|v|

holds for all M M, with a positive constant £, independent of the mesh size h.

The following theorem defines j;, and j;, interpolation operators that are important for deriving error
estimates for the LPS method (Matthies et al. 2007).

Theorem 1. Assume that Assumptions A2 and A3 are satisfied. Then, there are interpolation operators
In :Hl(Q) —Y, and j, 1V -V, satisfying the following orthogonality and approximation properties

(0-jho,®,)=0, VO, €Dy, YoeH(Q) (14a)
||a)—jha)||O’M +hy |a)—jha)|1yM <Chy "a)"s,m(M) (14b)

and
(W-jhw,®,)=0, v, eD,, VweV (15a)
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"‘”‘jh‘*’”o,lvl +hy |°°—J'h°°|1,M <Chy ”w"s,w(M ) (15b)

2
For all we Hs(a)(M)), weVﬂ(HS(M)) , M eM;, and 1<s <r+1, where »(M) denotes again

a certain neighborhood of M.
Next, we introduce the following mesh-dependent norm on the product space V,, xQy,

2
lovman )l =v(vol o +lanlio)+ S aw i Vanlf (16)
M eMp,

3.1 Stability

Theorem 2. Assume that Assumptions A2 and A3 hold and the parameters oy, are such that h,\z,, layy <C for
all elements M € M,. Then, there is a positive constant independent of h such that
By, (Vh,Qp W, 1,
inf sup h (Vi Gh;Wh. M)
(0.0)4(vh i )<Vh R (w1 JeVh @ [[(vh G )| (wn 7o )|
The proof is found in (Nafa and Wathen, 2009).

| > B,. 17)

3.2 Error estimates
First, we introduce the following consistency error (Ganesan et al., 2008).

Lemma 3. Assume that the fluctuation operator x; satisfies Assumption Al. Let

2
(u,p)eVﬂ[H r+1((2)] xQMH"(Q) be the solution of Stokes problem and (uy,py )€V, xQy be the

solution of the LPS stabilized problem. Then, the consistency error can be estimated by

1/2
B (u-Up,p—pp;Vh,dn ) <C (M ZM am h,?,|“2|p|f,,v, ] m(vh’Qh )|H (18)
eMp

forall (vp,qp )€V, xQy,. Then, the error estimate of the LPS method is given by the following theorem.

2
Theorem 4. Assume that the solution (u,p) of (3) belongs to Vﬂ[H rJ“l((z)] xQNH"(Q),

(uh,ph)evh xQy, is the solution of the local projection method (8), and «, are such that h,zv, lagy <C forall
elements M € My,. Then, the following error estimates hold

Jun e +10 =Pl <C" (1, #1101, ) 19)
for some positive constant C independent of h.

Proof. Let Gy, = jyu and p=i,p be the interpolants of the velocity and pressure respectively. By virtue of
Theorem 2, there exist (vp,,0p ) € Vi, xQy, satisfying

H|(Vh »0h )|” <C. (20)
We have
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[l(@n -un, i = P )|||2 =V(|ﬁh -Up |1ZQ +|Bn - ph||(2),Q)+5 (Ph —Pn+Pn —Pn)- (21)
Hence,
|G - up |12Q +[[Bn — P ||§Q <1/v"2||(Gp -un. B — ) (22)
Thus, by equivalence of norms on finite dimensional spaces in R2  ityields

[ - up |1ZQ +[[Bn — P ||§’Q <2112 |||(l]h -Uph. Pp — P )||| (23)
In addition, we have

G, -ur B — o )l <17 8, By, (Un =Up, B — PhiVh,dh) (24)
( )
llvn.an )|
ie.
|||(ﬁh -Up, Pp — Pp )|||S1/,32 B (U =4 P = P:vh,n) 175, B (U=Un P~ Pnivh.0h) (25)
v lIvn.an )|
Using the result of the consistency estimate with :Ch|\2,| , We obtain
Bh(u-uh’p_ph;vh’qh)SChr"p"rQ (26)

Jlvnan)l
where,
Bp, (Up =, Py — P; V0 ) =B (Up =W, Pp —P;Vh,dn ) +ShB (Ph —P.Gn )-
The terms of B(Gh -u, Py, —p;vh,qh) will be estimated using the approximation properties of the
interpolations j, and iy,

|V(V(l]h —u),Vvh )| < V|C|h —|J|1’Q |Vh |1,Q <Ch r |u|r+l,Q “|(Vh dh )|” (27)
and
(=B, VR ) <C 0 = Bh o Vi b <CNT [P, o [(vian )] (28)
To estimate the last term we shall use the integration by part and the orthogonality property of j,,
|(V.(l]h —U),qh )| =|(l~lh -Uu,Vagy )| = |(Gh —U,x, V0 )| (29)
Thus,
1/2 1/2
_ 1~ 2 2
Hence,
, 1/2 , 1/2
(-] % coat 2l )| %, el
, 1/2
<C (M gli/l i apihiy 2 ||“||r+1,w(|v| )] ”|(Vh h )m (31)
ie.
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(V@ —u).an ) <C*h" Jul, ;o I(vivan )] (32)

for some positive constant C *.
Now, to estimate the stabilizing term S,,B (f)h -p,an ) we use the L2 -stability of the fluctuation operator

xy, and the approximation property of iy,. We obtain the following:

ShB (Bh—p.an)l=| = am (KpV(Ph—p).KnVP,

M eMp
1/2 1/2
~ 2 2

S(MEZMhOIM "Khv(ph _p)"O,M J [MEZMhO!M "Kthh"O,M \] . (33)

Thus by (11) we get
) ) 1/2
518 (P - p,qh>|sc[ SR L ] v an)]
M eMp :
12
|ShB (Bn — pth)|§C[ > oy 2|ph - p|§,|v| J |||(Vh’Qh )|||
M eMp
using o =Ch,\2,I , We have
1/2
- 2
[SnB (Bh —P.an )|SC1( > hi ol J lvaan) (34)
M eMp '
Hence
568 (Bn —p.an)| <Ch" ], [I(vhan ) (35)
rQ

Using (26) and (35), we get

|||:Ih _uh ||l,Q +||r5h - p"O,Q SCh ' (||u||r+1,Q +||p||r,Q) ' =

The required error estimate then follows using the triangular inequality together with the interpolant
estimates. As already observed, the existence of the interpolation operators j, and jy, is fundamental, in LPS

methods, for deriving the error estimates. Since, Assumption A3 may not be fulfilled, the existence of these
operators is not always guaranteed.

3.3 Two-level local projection stabilization
This class of stabilized schemes uses discontinuous pressure gradient projection approximations of degree
r—1 which are defined on the coarser mesh M =T,,. Let 7, (5 be the L2 -projection onto D;, then
kp—id —7op ;3 Here, for rectangular elements, the spaces Y, and Dy, are chosen as
Y /Dp =Qr p Q5o - (36)
It has been proved in (Matthies et al., 2007) that the pairs given by (36) satisfy Assumptions A3.
3.4 One-level enriched equal order stabilization

From the implementation point of view, a drawback of the two-level approach is the fact that the added
stabilizing term produces a larger stencil which may not fit in the data structure of an available programming
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code. A general theory which allows the derivation of a novel class of local projection stabilization by
enrichment of the approximation spaces has been established in (Matthies et al., 2007). This class of stabilized
schemes uses approximation and projection spaces defined on the same mesh and leads to much more compact
stencils than in the two-level approach.

Let My, =Ty, 7y g be the L2 -projection onto Dy,, and }, =id — 7 r—1- FOr rectangular elements,
the spaces Y, and D}, are chosen as

Y /Dp =Q% IQMT (37)
or
Yh /Dy =QPE/PIS, (38)
where
nyﬁ(KA)=Qr,h(KA)@span{be‘{‘l, i :1,---,d} (39)
QPP (K )=Qrn (K)+beQryp(K) (40)

and bK~ is a biquadratic bubble function on the reference element K . Here also the pairs given by (37) and (38)

satisfy Assumptions A3.

Note that, the local projection method described above does not add an extra cost to the solution of Stokes
algebraic system. This is due to the elimination of pressure gradient unknowns at element level (Nafa and
Wathen, 2009).

4. Numerical results

Numerical results for two Stokes problems are presented. The performance of the first order two-level
method Q;p, /Qp2n and the one-level method th /Qo, n approximations are obtained for ay =a0h,\2,|
where «j is a constant.

4.1 Problem1

The first problem consists of solving Stokes problem in the unit square with exact solution ([ul,uz]T , p)
given by

up(x,y) =2x2A-x)%y 0-y)y @-2y), uy(x,y)=-2x(1-x)A-2x)y *(1-y)?
and

px,y)=x -x2.

Numerical results are obtained, using the LPS method, for v =1. Calculations were performed for
o =0.1 and o =1 using the two-level and one-level methods.

The results given in Figures 2-5 indicate that the error norms [u—u |, , and [u—u |, converge at the

predicted rates, while ||p - Pn ||0 o Seems to converge at a rate of about 3/2 as observed by Becker and Braack
(2001) and by Nafa and Wathen (2009).
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4.2 Problem2

To test the accuracy of the method, we consider the standard Poisseuille flow in the channel
Q=[0,4]x[0,1]. We prescribe a parabolic inflow profile and use natural outlet conditions. The Dirichlet
boundary conditions are not imposed on the whole boundary and natural boundary conditions

ou
—-—pn=0
on P

are employed. The solution of the problem is given by

up(x,y)=1-4(y —]/2)2, up(x,y)=0 and p(x,y)=8-2x.

10 : 10°
107} 10"
g 10? g 10®
w
10°} E 10°
—x—1IP-P i,y ——llp-p i,
—h-— —h-
*— _p ¥2 % _p 32
10* ‘ 10 . i
102 10" 10° 102 10” 10°

h h

Figure 5. Pressure error norm using th Qo interpolation with o =0.1 (left) and o =1 (right).

£
S 05
2

041

031

—+&— exact velocity
0.2 velocity at x=4
0.1
o . . . .
0 0.2 0.4 0.6 0.8 1

y

Figure 6. Velocity profile using Q; 1, /Qq o interpolation with o5 =0.1.
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051

Figure 7. Pressure contours using Qy  /Qq 2y, interpolation with o =0.1.

First, the problem is solved using Q; 1, /Qqn approximation on a 32x16 grid. The obtained results are

illustrated in Figures 6 and 7 respectively, for the velocity and pressure solutions. We observe that the
approximated pressure solution is exact even near the boundaries. In addition, Figure 8 shows that the velocity
profile at the outlet boundary is in perfect agreement with the exact solution there.

The numerical solution of the Poiseuille problem is also performed on a 32x16 grid using the one-level
enriched approximation th /Qo,n- We obtain similar results to the two-level method for the velocity profiles as

shown in Figure 9. The pressure solutions obtained for o =10, 10%, 10°, and 10 respectively, are illustrated in

Figure 9. We note that while varying the coefficient o, =a0h,\2,| over the wide range from 0.1 to 10% the

obtained results change considerably. These results show that the pressure solution for the enriched one-level
method is more sensitive to the choice of the parameter oy as compared to the two-level method.

1 1
0.9 q 09r
08F 1 08}
071 1 07t
06 08
F- Z
805 S o5
g 2
04r 04
0.3 03r
—8— exact velocity —&— exact velocity
0.2 velocity at x=4 1 0.2 velocity at x=4
01 011
o . . . . . .
0 02 04 0.6 08 1 % 02 0.4 06 08 1

Figure 8. Velocity profile at the outlet of the channel using th /Qo,n interpolation with o =0.1 (left) and
og =1 (right).
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5. Conclusion

The convergence, stability and accuracy of LPS for the Stokes problem has been investigated using the
one-level and two-level bilinear finite element interpolation. The numerical results show that the order of
convergence for both approaches is as predicted theoretically for the velocity. But, the L? rate of convergence for
the pressure is approximately 3/2 as noted by other researchers (Becker and Braack, 2001; Nafa and Wathen,
2009). Also, we observe that the computation of the Poisseuille solution produces the exact velocity
independently of the parameter « for both methods. However, it is shown that the pressure is exact even near

the boundaries for the two-level method and depends on the parameter o, for the one-level enriched method. In
fact, to obtain results similar to those obtained by the two-level method, we have to take large values for o .

! il I \ T 1 T
7‘\“\“w\\l\ I}H i T I
I | I
UH‘WHM]\\M ] AL |
o o5 1 15 2 25 3 35 4 o o5 1 15 2 25 3 35 4
(a) ag =10 (b) ag =102
1 e 1
M
0.5—‘\ ‘ ‘ ‘ 0.5+
o ‘o.‘s ‘ 1‘ 15 2 25 3 35 ‘ 4 o 05 1 15 2 25 3 35 4
(©) ap =10° (d) ag =10*

Figure 9. Pressure contours using th /Qqp interpolation with different values of « .
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