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ABSTRACT: Given a mesh of wireless nodes for WiFi customers covering a city district, we 

describe a genetic algorithm-based approach to the problem of selecting a small fixed number of 

nodes as gateways to the internet, and linking the remaining nodes to the gateways either directly or 

by 'hopping', to create an efficient mesh network structure. The algorithm uses a modification of k-

means clustering to allocate nodes to gateways. 
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 متشابكة بواسطة خوارزمية وراثية (WiFi)فاي -الخطوات الأولية في تصميم شبكة واي

 يوارت ناش مارتن ريد و ست

، نصف ما تغطً منطقة فً مدٌنة (WiFi)فاي -مستخدمً شبكة وايلنقاط لاسلكٌة  ةبافتراض وجود شبك :ملخص

خوارزمٌة وراثٌة لمسألة اختٌار عدد ثابت وصغٌر من نقاط الشبكة كبوابات إخراج إلى الشبكة العنكبوتٌة مع ربط باقً 
تجمع  k لمتوسطات لشبكة. تستخدم الخوارزمٌة تعدٌلافعالة لتكوٌن هٌكلٌة ل" لقفزشبكة إما بطرٌقة مباشرة أو "باالنقاط 

 .وذلك لتحدٌد نقاط بوابات الخروج

1. Introduction 

Mesh WiFi network is a city-wide wireless network providing broadband connections for consumer 

equipment such as laptops and smartphones. Coverage is provided by WiFi nodes attached to masts, lamp-

posts and other street furniture. Connecting each of these nodes directly to the wired internet would be 

prohibitively expensive, so a mesh network is formed, where only a small proportion of nodes are directly 

connected (these are called gateway nodes), and the remaining nodes transmit their data to a gateway, either 

directly or by 'hopping' via one or more intermediate nodes. We are given the nodes' locations, and a list of 

which nodes have the potential for being gateways, as in Figure 1. We also know, for each node, a list of those 

other nodes which it can 'see', i.e. would be able to transmit to. These links are limited by distance and also by 

line-of-sight; two nearby nodes may not be able to connect to each other because of an intervening building. The 

initial graph contains the potential connections as edges; see for example Figure 2. The task is to design an 

efficient mesh structure by identifying a small number of nodes which will be used as gateways, and the route by 

which each of the other nodes will link to a gateway. An efficient network is one which is feasible (each node is 

connected to a gateway, directly or indirectly, using valid links), and in which:   

A 
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    • The number of gateways G is relatively small;  

    • Each gateway services approximately the same number of nodes, i.e. the load or bandwidth is balanced 

among gateways;  

    • The amount of data-hopping from nodes to gateways is minimised.  

 

 

 
 

Figure 1. Example 1: Node locations. 

 

 
 

Figure 2. Example 1: All possible connections. 

 

A search of the literature - in particular of the relevant Institute of Electrical and Electronic Engineers 

(IEEE) conferences - has not revealed any published algorithmic approaches to this problem. As will be seen in 

Section 4 below, it is straightforward to evaluate a cost function for a given Mesh WiFi network structure. 

However, the structure itself is complex, consisting of a division of the initial graph into G separate subgraphs, 

each having one of its nodes designated as a gateway and (direct or indirect) connections from the other nodes to 

the gateway node. Two general approaches to algorithm design for this combinatorial problem might be:   

i. First assign the nodes to G clusters, then within each cluster select the gateway node and hence choose 
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the edges needed to connect the other nodes to it; or  

ii. First select the G gateway nodes, then 'grow' the subgraphs from each gateway until all nodes are 

included in a subgraph.  

A combinatorial optimization problem with characteristics similar to the Mesh WiFi problem, is the Vehicle 

Routing Problem (VRP). In a VRP, a fleet of vehicles must be routed to deliver goods from a central depot to a 

distributed set of customers. The VRP thus involves the interdependent tasks of associating each vehicle with a 

cluster of customers, and for each vehicle determining the most efficient route by which the vehicle can visit 

those customers, all routes beginning and ending at a central depot. The customers are treated as nodes on a 

graph, and we seek a shortest-path route for each vehicle such that each customer node is visited by exactly one 

vehicle. Here we also find two general categories of heuristic constructive algorithms which have been proposed 

in the literature, namely 'cluster-first, route-second' and 'route-first, cluster-second'. For example Beasley (1983) 

gives an example of a route-first cluster-second algorithm. This categorisation of algorithms also applies to the 

more complicated Capacitated Arc Routing Problem (CARP), where the customers are distributed along arcs of 

a graph, and each customer has a demand quantity ;wj  the total demand on a given route must not exceed the 

vehicle capacity W. In the first approach, the graph is partitioned into clusters containing adjoining arcs, each 

cluster having a total demand not exceeding W, using a greedy algorithm or general assignment algorithm; then 

for each cluster a shortest-path route around the arcs is required (a standard problem in Operations Research 

known as the Chinese Postman Problem). The second approach may involve first constructing an Euler 'grand 

tour' over all the arcs, which is then partitioned into feasible sub-tours, each satisfying the capacity constraint. 

Eiselt et al. (1995) review published algorithms for the CARP. Practical applications include the routing of street 

sweeping and road-gritting, postal delivery and waste and recycling collection. 

The CARP is an NP-hard (non-deterministic polynomial-time hard) problem. When comparing it to the 

Mesh WiFi problem, however, we see an additional level of complication in the latter: within each cluster we do 

not have to find a route around the arcs/nodes starting and finishing at a central depot node, but we need to 

efficiently link the nodes to a gateway node which must itself be chosen from among the cluster nodes as part of 

the problem. The CARP can be extended to the Multiple Depot VRP. In the MDVRP a fixed number of depot 

locations are prescribed. Practical applications include consumer goods distribution and newspaper delivery. A 

recent paper by Ho et al. (2008) approaches the MDVRP using genetic algorithms. 

If the optimal location of the depots (and possibly also the optimal number of depots) must be determined 

as part of the problem, we have the Location Routing Problem (LRP). The LRP is an extension of the MDVRP 

in which a (prescribed or optimal) number of depot facility sites must be chosen from a set of potential depot 

locations, and a cluster of customers built around each facility, which can then be routed. This is the routing 

problem closest to the Mesh WiFi problem. The LRP comprises a Facility Location Problem and a VRP as sub-

problems, each of which is NP-hard. A review of LRP algorithms by Tuzun and Burke (1999) suggests that the 

most profitable approach to this problem is an integrated or two-phase algorithm, which iterates between the 

location and routing sub-problems. A practical LRP problem solved numerically involved location of regional 

blood-banks serving hospitals in a region. 

A recent development in solving combinatorial optimization problems is the use of metaheuristics, which 

provide a general framework for directed search within the set of feasible solutions. Under this heading we may 

mention simulated annealing, tabu search, neural networks, and evolutionary computation methods. In the last 

category the most well-established metaheuristic is genetic algorithms, although the power of ant colony 

optimisation (Dorigo and Stuetzle, 2004) is becoming increasingly recognized. This paper proposes a genetic 

algorithm (GA) based method for the Mesh WiFi problem. An individual in the GA is defined just by the 

unordered list of its gateway nodes; from these, the allocation of nodes to gateways is done by a clustering 

algorithm. The clustering algorithm is also used to create the initial population of feasible solutions. Very simple 

crossover and mutation operators are used; crossover is performed essentially by picking low-cost gateways 

from the two parent solutions. The GA was run for 50 generations. It was tested on randomly-generated mesh 

layouts of up to 100 nodes. 
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2. Genetic algorithms 

Genetic algorithms were first proposed by Holland (1975), and popularised in the textbook by Goldberg 

(1997). They are used to find single or multiple optima of a fitness function F. They are zero-derivative methods, 

and require no smoothness conditions on F. They work with an encoding of feasible solutions, for example as 

binary strings, ordered or unordered lists of letters or integers, or real-valued vectors. Each encoded solution is 

called an individual, or chromosome, and its individual elements are genes. The GA algorithm starts from an 

initial population of N individuals, usually randomly-generated. The fitness of each individual is evaluated. The 

GA then proceeds to develop a next-generation population by first copying all the current population. It then 

augments and refines this population using combination, mutation and selection, as follows:   

i. Combination: Two parent individuals are selected by weighted roulette wheel selection (individuals of 

higher fitness have a greater chance of being selected), and combined to produce one or more offspring. 

The possible combination operations usually include a variant of the biological process of genetic 

crossover;  

ii. Mutation: The fittest of the offspring is chosen, but before being added to the new population a process 

of random mutation is applied to its genes; typically each gene has a 0.01 chance of being mutated (e.g. 

by flipping between 0 and 1 in a binary string). The combination+mutation process is repeated k times, 

creating k new population members;  

iii. Selection: The new, augmented population of size N k is reduced to size N by a 'survival of the 

fittest' process.  

The above procedure is repeated with the new population, and iterated until a population containing individuals 

of sufficiently high fitness is obtained. In line with the Simple Genetic Algorithm (SGA) of Goldberg, we create 

two offsprings from each combination using crossover, and perform the selection process using binary 

tournament: in each tournament, two individuals are picked at random, and the individual with the lower fitness 

is marked for deletion. 

As with the Location Routing Problem discussed above, the Mesh WiFi problem is not amenable to a 

standard implementation of GA. It involves two sub-problems: the Gateway Location Problem (GLP) and the 

Mesh Routing Problem (MRP), both of which are NP-hard, and which are interdependent. The fitness of a 

selected set of gateways cannot be assessed without forming a mesh routing solution, and mesh routing can only 

be performed on the basis of a set of gateways. A complete feasible solution, prescribing the gateway locations 

and the routing, is too complicated a phenotype to be expressible as a genotype such as a binary string. Our 

solution to this problem is to solve the GLP using a genetic algorithm, in which the chromosome is just an 

unordered list of gateway nodes. From such a GLP solution a MRP solution is grown using a clustering 

algorithm. 

The following three sections describe features of the GA applied to the Mesh WiFi problem. We denote the 

number of nodes by N, and the number of gateways by G; typically 0.1 < < 0.2 .N G N  

3. Features I: Encoding and the clustering algorithm 

The success of a GA for a particular situation depends greatly on the way that solutions are encoded. A full 

encoding of a mesh network could be done using a vector of N integers, where the ith integer either indicates that 

node i is a gateway node (by using a value of 0, for example), or gives the number of the node to which node i 

will transmit its data. However such an encoding does not reflect the geometric properties of the network; the 

primary property is the allocation of nodes to gateways, i.e. the partition of the N nodes into G clusters, each 

cluster containing a gateway node and the nodes which transmit to it either directly or indirectly. We therefore 

chose a simpler partial encoding which just contained the G gateway node numbers, in an unordered list. From 

this list, the full network would be constructed using a clustering algorithm. 

The principle of k-means clustering (Lloyd, 1982) is to partition a set of N data-points into k clusters, such 

that each point is in the cluster whose centroid is closest to it. The clustering process is usually performed by an 



M.B. REED and S. NASH 

218 

iterative algorithm (Lloyd's algorithm) involving two steps, starting from an initial partition whose cluster 

centroids have been calculated:   

i. Assignment: Assign each point to the cluster with the closest centroid;  

ii. Update: Re-calculate the centroids of the clusters.  

The iteration continues until no re-allocation of nodes is occurring. While the general principle of this algorithm 

is relevant to the Mesh Wifi problem, there is a difficulty. As was already observed, two nodes may be close 

together spatially, but unable to link due to an intervening building. The clustering should thus be done on the 

basis of the potential connections, rather than spatial distances. In our variant of k-means clustering, the distance 

from node i to the centroid of cluster m was replaced by the proportion  

 = im
im

m

v
p
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where imv is the number of nodes in cluster m which node i can 'see' (i.e. is connected by an arc on the initial 

graph), and ms is the number of nodes in cluster m. In the iterative algorithm, node i is assigned to the cluster 

with the highest value of .imp  The gateway nodes themselves do not get reassigned. 

Once the iteration has converged, the network connections within each cluster are formed. First, all nodes 

in the cluster which can see the gateway node, are routed directly to it. Then all unconnected nodes which can 

see an already-connected node, are routed to that node - and so on, until all nodes in the cluster are routed by 

pathways to the gateway. This approach is also used to grow the initial clusters from the gateways, at the start of 

the k-means clustering algorithm. 

The initial population of the GA consists of solutions formed by choosing G gateways at random from 

among the potential gateway nodes, and then applying the clustering algorithm. 

4. Features II: Fitness function 

The fitness function used was  
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where the cost function C is the sum of the costs for each gateway cluster. This is given by  
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Here, c is the average nodal bandwidth, defined as the total bandwidth B for the network divided by N, and the 

cost mc of the mth cluster is   
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where cluster m has mr nodes connected directly to its gateway, and ms nodes connected indirectly (through 

hopping). 

It can be checked that = 0C  in the ideal network of equal numbers of nodes in each cluster, and no 

hopping. The optimal fitness is thus =1,F  and the range is 0 < 1.F   

5. Features III: Genetic operations 

In the Combination step of the GA, a pair of offsprings are formed from two parent solutions (a 'mother' 

and a 'father'), chosen by roulette-wheel selection. Each parent consists of an unordered list of G gateway nodes. 

The list of gateways defining the first offspring ('child 1') is formed by first including all gateways which appear 

in both the mother and the father. Then we look at the cluster costs (as defined in the fitness function) of the 
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remaining gateways in the mother, and include the maternal gateway associated with the least cost. Any 

remaining gateways in child 1 are obtained from the father, again using the lowest-cost principle. Child 2 is 

formed in the same way but using the least-cost paternal gateway, and filling with low-cost gateways from the 

mother. The fitness of each child is then calculated. Note that this operation may produce infeasible solutions as 

offsprings if the initial graph is not fully connected. 

Mutation is applied to the fitter offspring before it is added to the augmented population. Each gateway 

node is considered in turn, and has a 0.03 probability of being mutated. Where a mutation occurs, the node is 

replaced by a node which it can see, selected randomly. After mutation, the clustering is re-performed with the 

new gateway nodes. 

 

 
 

Figure 3. Example 1: 10 Gateways: Best initial connections. 

 

 
 

Figure 4. Example 1: 10 Gateways: Best final connections. 

6. Results 

The algorithm is in the early stages of development, but has already produced encouraging results on small 
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sets of artificial data. To generate the data, one hundred nodes were first positioned randomly over a unit square, 

and each of these had a 0.5 probability of being identified as a potential gateway (see Figure 1). Potential 

connections were also assigned with a random probability, between nodes sufficiently close together (Figure 2). 

An initial population of 50 solutions was then created by randomly selecting 10 gateways, and growing the 

clusters as described in Section 3. The fitness of each solution was calculated, and Figure 3 shows the highest-

fitness solution in the initial population. The GA was then run for 50 iterations, and Figure 4 shows the best 

solution in the final population. A more even distribution of nodes into clusters is observed in Figure 4, although 

the cost has only decreased from 4.91 to 4.55. Figures 5 and 6 show the best initial and best final structures when 

17 gateways are allowed. Here the cost has decreased from 2.00 to 1.27. In the second example, Figures 7 and 8, 

two exclusion zones were imposed in the domain, to represent adjoining buildings which prevent line-of-sight 

communication between nodes.  In this case 17 gateways were specified, and the best initial and final structures 

are shown in Figures 9 and 10.  

 

 
 

Figure 5. Example 1: 17 Gateways: Best initial connections. 

 

 
 

Figure 6. Example 1: 17 Gateways: Best final connections. 

7. Conclusions 

Initial results indicate that a genetic algorithm, utilising clustering, is a possible technique for assisting the 
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design of a Mesh WiFi network. Improvements could be made in many of the features of the current algorithm. 

Techniques from graph theory could be applied, in particular the Dijkstra algorithm for determining the shortest-

path route between two given nodes, and the matrix-based algorithm finding the matrix of shortest path lengths 

between node pairs (Chen, 2003). This information could be used to check that the initial graph is fully 

connected, and to construct higher-fitness solutions for the initial population of the GA. The following are some 

further possibilities:   

 

 
 

Figure 7. Example 2: Node locations. 

 

 
 

Figure 8. Example 2: All possible connections. 

 

i. The clustering algorithm may be improved by using a different connection-based metric. For example, a 

node may be associated with the cluster for which the average path length to the other nodes in the 

cluster is smallest.  

ii. The fitness function is insensitive to poor internal construction of a cluster, when the size of the cluster 

is lower than average; there is thus no incentive for the GA to find the best node to act as the gateway. 

There should also be greater penalizing of paths involving more than one hop to reach the gateway, for 

example by replacing (1) by  
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where ms nodes need one hop, and mt nodes need two or more hops to reach the gateway.  

iii. From looking at the initial graph showing all possible connections, it is clear that some nodes are more 

suitable as gateways than others, because of their high number of connections; this information could 

be used in the algorithm, by computing the degree of each node. The crossover and mutation 

operations, and the initial clusterings could be improved using this information.  

iv. Once a mesh routing has been grown from a given set of gateways, the selection of the gateway node 

within each cluster could be optimized, by choosing the node with the lowest maximum path length to 

other nodes in the cluster, before redrawing the routes as described in Section 3.  

 

 
 

Figure 9. Example 2: 17 Gateways: Best initial connections. 

 

 
 

Figure  10:  Example 2: 17 Gateways: Best final connections. 
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A further development would be to treat the number of gateways G as a variable to be minimised. 

Following the practice with VRPs, this could be achieved by starting with a small value for G and re-running the 

algorithm with increasing values of G until feasible solutions of acceptable cost are found. 
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