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ABSTRACT: We consider a Galerkin procedure to solve a parabolic integrodifferential equation
that arises in a gas combustion model. This model has been proposed by Kassoy and Poland, and
subsequently analyzed by Bebernes, Eberly and Bressan. The problem is formulated in the variational
form. In order to estimate the error, some intermediate projection has been employed. Under certain
conditions on the given data, the L2 error estimate has been obtained. A fully descretized version by

using an extrapolated Crank-Nicolson method has been applied and the order of convergence
derived.
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1. Introduction

assoy and Poland (1983) developed an ignition model for a reactive gas in a bounded container to describe
the induction period. During this period, the spacially uniform pressure increases and causes heating effects
in the system. The pressure of the gas can be expressed in terms of a space integral term in the induction model
that governs the temperature perturbation u(x,t). This model is described by the set of equations (Bebernes and

Bressan, 1988)

U —Au = Ge J%lﬁbut (A, (X,t) € Qx(0,00), )
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u(x,0)=gx), xeQ, 2
u(x,t)=0, (x,t)eoQx(0,), 3)

where Q is a bounded domain in R" with a smooth boundary o€, and volume |Q|,  >1.

The model has been subsequently studied by Bebernes and Bressan (1982), Bebernes and Bressan (1988),
and Bebernes et al. (1989). Bebernes and Bressan (1982) analyzed this model and proved that for any positive
value of the Frak-Kamenetski parameter & and any value of the gas constant y >1, equations (1) have a unique

classical solution u(x,t) on Qx[0,T), where Q is a bounded domain and T can be infinite. When T is finite,
the solution blows up as t —T . For a critical value J; (see (Kassoy and Poland, 1983)), and & > &q¢, the

solution blows up in a finite time.

Bebernes and Eberly (1989) used the semigroup analysis to show the existence and uniqueness of a
nonextended solution. Additional comparison results have been provided in the case of a spherically symmetric
domain. Blowup occurs at a time o <T where T is the blowup time of the solid fuel ignition model. The
location of the blowup has been also discussed. Depending on the nonlinearity of f, blowup can take place
everywhere or at a single point (Bebernes and Eberly, 1989).

In this paper, we study a finite element approximation to the solution of the gas combustion model that is
described by the partial differential equation (Bebernes and Eberly, 1989)

up —Au =f (u)+77_1ﬁjgut x,)dx,  (x,t) eQx(0,%), 4)
uix,00=g(x), xeQ, ®)
u(x,t)=0, (x,t)eoQx(0,x). (6)

We assume f is a Lipschitz function such that f (u)>0,f ‘(u)>0, and f "(u) >0. In this work we develop

estimates for error when a Galerkin method is applied. The error is optimal in the sense of the L? norm. This
work is motivated by that of Cannon and Lin (1990a, 1990b). An extensive study of the finite element method
for parabolic equations can be found in a book by Thomée (2006).

2. Formulation of the variational problem and Galerkin approximation

Let S}, be a finite dimensional subspace of the Sobolev space Hé(Q) such that
inf (W —v|+h|vew —v)p=ch® ||, v eH*@nHHQ), (7)
W eSh

where s >1, | is the L? norm, and [l is the Sobolev norm defined on H ® ().

Problem (4) is equivalent to findinga u e H® () Hcl,(Q) such that
(U v)+(Vu,vv) = (f (u),v)+7—_1|—é|j9utdx v dx, forallv eH(l)(Q), (8)
Y
where (-,-) is the inner product on LZ(Q) defined as (u,v) = [uvadx.
The continuous Galerkin approximation U :[0,T ] — Sy, is defined as a solution to
-11
Ui )+ (VU V)= (F U)o )+I==
y 14|
U(x,0)0=G(x), (9)

where G (x) is the L2 projection of g(x) into S, i.e.,

oUidx fq xdx, X €S,

225



M. SALMAN and J. KIM

G-g,x)=0 for yeS;.
Given a basis {¢ }i'v':l for Sy,, U can be written as

Ut)= T 00 0.

Then the variational equation can be written as the nonlinear initial value problem
Ba'(t)+Aa(t)=F(at)), Ca(0)=g,
where A, B, and C are the matrices

A=(VH.V),
B = 0y)= 61 9y) ~L % 1l o o
C=(h.4)).

for i, j=1,2,---,M , and the vectors a, F, and g are defined by

a(t) = (o (1),
H@=«(§gﬂxmx
9=(9.4).

The matrix B is positive definite, since

T M
a Ba= Zb'] ; aj
i=1

(IQ Za.¢ dx )

IQI

(jQU dx)

===

>%mw >0 for U #0,

IQI

where we used the Schwarz inequality (U dx )? <JpU Zdx lo 1°dx =| Qlu ||2

(10)

With the assumption that f (u) is uniformly Lipschitz, then it follows from the theory of ordinary

differential equations that the initial-value problem (10) has a unique solution for t > 0.
3. Projection of the solution

LetW :[0,T ] > Sy, such that
(Vu-W),Vy)=0 forall yeSy.

(11)

Then W is the elliptic projection of u e H*® (Q)mH%(Q) into S;, that satisfies the following properties

(Thomée, 2006)
Ju-w | <Ch® ful .
[Vu —vw || <ch®|ju I »
Jug ~We [ <Ch® ful; -
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4. Error estimates

Let u-U =u-W +W —-U =#n+6, where 7 =u-W and =W —U. From (8), (9) and (11), we get
G )+ (VO Vy) =W, -Up, 2) +(VW VU, Vy)
=W, )+ (VW ,Vy)-U, 1) - (VU V)

=W, 1)+ (Vu,Vy)-(f U), z)———IQU dx o x dx

— Wy U )+ ) —F U) )+ J@tg(ut Uy)dx [, 7 |

i.e.,

G, 2)+ VOV ==, 1)+ (F @)—F V), 0)+L l|Qlfgf7th Joxox+1= p Igetdx Jo zdx.  (15)

We choose y =@ and rewrite the equation

1;/ -11d
--L -_— — =— — 1
2dt || || PRTSYET (jQde) +||V9|| (. 0)+(f U)-f V), 9)+ , antdx o @dx . (16)
Assumlng that fis uniformly Lipschitz with
If @) —f Uy)|<Ljup—uy|. (17)
Then, using Schwarz and Young's inequalities implies
ly-11d 2 2 C 2 2 2
== Vo <— C L L : 18
2l 5 o G Gaw? slwef? < e cloff +Ljoff +Lnlle (18)

With the use of Pomcare Friedrichs' inequality (Gilbarg and Trudinger, 1983)

1/n
=221 gl
n

we obtain
pp_lr-11d 120210 12 . C 2 2
2ol 37 g G000+ 0 <+ Sl + Ll (19)
If the Lipschitz constant of f is small enough such that
L < (l Q |)2/n , (20)
Wn
then we can also choose & small enough so that (@)2/” >L +Ce¢. Thus, we have
n
ly-11d 2 2 2 2
—_——— d C <C C . 21
2l 57 s Ga 0 <Clolf <Claff +c @

Integrating both sides from 0 to t after dropping C ||6'||2 to get

0 25510 0957 <[0COI <C Iy G+ )
Then, using schwarz inequallty to obtain

el <loc O sc i Gl +la P de.
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Here
loc.olf =[w ¢.0)-U (.0)]
<|W (,0)=u(,0)+[u(0)-U (-0
<Ch*[g]; +|g -G <Ch*[g], ,
and ||77||2 + | ||2 can be replaced by their upper bound in (12) and (14). This implies

Ju-Uf<ch®fgf, +Ch® 5 ull +lue | d e (22)
This establishes the following theorem.

Theorem 1. Suppose that problem (4) possesses a solution u in HS(Q)chl,(Q), ugin H®(Q), and f is
uniformly Lipschitz that satisfies (17) and (20). Then, the continuous Galerkin solution U of (9) satisfies (22).

Proof. The next step is to get an estimate for V(u -W ) For that purpose we put y =& in (15). This yields

11
4] += ot Lol =)+ @)-f U).&)+ |Qlfgmdx Joo G dx +7—(j99tdx) . (23)
This implies
2 1d 2 C 2 2 C 2 =1, 2
v <= =|If —f i . 24
a5 IVl <Cm I celalf + i @t W 74 @
Estimating the righthand side we get
1,2
— \4 — Ce —J|u-U 25
lal 2dtll off < IImII +Celg [P +° || I (25)
Selecting & small so that 1 >C ¢, we can drop the ||¢ | terms to get
Y
d
EIIWII2 <Clm|*+CJu-ul?. (26)
Upon integrating from 0 to t, we get
[vel* <[voc.off +C fg | +C foju -u [, 27)
where
[Vo(,0)|<[Vu(,0)=VU (-, 0)|+|VW (,0)—Vu(-,0)| )
<[vg -vG|+ch* gl ,
and
Blu-Uldz<f (Chs’l||gs_1||s_1+||g ~G[+ChS S (uC. B +]ue . B))) d ﬂ)d z. (29)

The double integration can be interchanged, a process to suppress one of the integrals, then the right hand
side simplifies to

lolu-Ulldz=Clo] g ~G|+n* (gl y+lul;_y +ucl, ) ]+ (30)
In view of (28) and (30), estimate (27) may become
2 ~ _
[vol <|vg -V |+ch* gl 4 +CJo[ o -6 |+n* (ol 4+l +lucl ) Jdz. (D)
This proves the theorem.
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Theorem 2. Under all the assumptions mentioned in Theorem 1, we have
[vu-vu<ch® gl +luly y+ 55 (ol g +luely y)d e} (32)

Note that as G being the L2 projection of g onto Sy, , it legitimizes the estimates
lo—Gll<ch® g .
[V -vG|<cn®g| ,

5. A priori estimate on extrapolated Crank-Nicolson-Galerkin method

In order to get a fully discretized version of the Galerkin method, we introduce the time mesh t,,, = mk for
m =0,1,---, M, where k is a uniform time step. For the rest of this section, we denote
= 1
Fm = E(Fm +Fm41)
as an averaged value of F on the nodes t,, and t, ;.
In the Crank-Nicolson method, we replace the time derivative in (9) by U, = U1 -Up)/k and U by

Um= U, +U 1)/ 2. This defines U ,,,4 as a solution to the nonlinear system
— — -11
@ )+ (Um V)= Um) )+ 7= onlo U [ o, 7 eSy.

The nonlinearity due to f (Um) can be overcome by replacing the argument of f (Um) by an extrapolated
U over the time stepsmand m -1, i.e.

— 3 1
fUm)~f (EUm _EUm—l)-

We denote these extrapolated values by

Frn :gFm —%Fm_l. (33)
This produces the new linearized equation in U 4 as
U, 2)+(Wm,Vy)=(f Upn )Z)+_@J98U dx Jo xdx,  yeSp. (34)
Note that this extrapolation process will result in a second order accuracy
Up = gum _%um—l = U2 O (K 2) )

With U ,1/2 =U (.t ,/2). We shall estimate the error U, —u (.t )|

Ugn —uGty)=U, W Gt) AW Gty ) —uGty) =60 + 7
where the estimate of 7, is shown in (12). We now consider 6, by writing
(06 2)+(VOm V1) = (@, 2) + (W m V) =W iy, 2) + (W m,V2)

=(fUp,)- f um), ;()+—@fg[ agtm jdx Jey 20X +(%—8Wm, j (35)

where
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Fum) =5 () +1 @n i)

This implies
o6,,, r-11
(06m . x) - PATSY

=(f (U )— f Um) )+ _ﬁjg[aﬂm +oUupy —

—— [ 00 dX [ X +(V6m,Vy)

al,lm 6Jm
ot jdx [y 20X —| Ompy +0Uy, —?;(J (36)

Setting 7 = 6m, We can get

20l O 0% + |V [ <C(Hf(u )T )| +lomm [+oun - S

j”vém || . @

2
} : (38)

The last two norms on the right hand side are of orders h? and k4, respectively. Moreover
IF Um)=F )| <[f Um)=f @mag2)|+[f Umiw2)—F )|
<C(Um ~umavz] +k?) (39)
i ~Um ] +k %)
<C (|6 + 62| +h® +k2),

where 6, 7, and Up, are the extrapolated representations for 6, 7y, and up,, respectively. On the other
hand, the left hand side of (38) is bounded below by

2_1
SollnlP 22 201 On 0 2 ol (o

Now, in view of (39) and (40), estimate (38) can be written as
|6mal® < (@+CK) [ [P +CK [|6m” +Ck (h® +k 2)?,

where we have used the Poincaré-Friedrichs' inequality ||5m || < ||V5m || This implies

oUm

1 1
o oup —

|| On” -

(ane dx ) <ch(u )— f(um)“ + o | +

or
|62 ® +Ck 6 |F < (420K ) (|6 |7 +CK |6 a|?) +Ck (h® +k 2)?. (41)
A repeated application of (41), with a small k, implies
16w F <C (617 +K [ o]?) +C (h® +k 2)?.
If 8, and &, are both calculated with an accuracy O (h®)+0O (k 2), we get the following result
l6m ] <C (hS +k?),

which proves the following theorem.
Theorem 3. The extrapolated Crank-Nicolson solution U ,, of (34) satisfies

max||Um _Um "SC (hs +k 2) )
m

where C depends on u.
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