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ABSTRACT: Electroencephalography (EEG) is the recording of electrical activity along the scalp 

produced by the firing of neurons within the brain. The main application of EEG is in the case of 

epilepsy, as epileptic activity can create clear abnormalities on a standard EEG study. EEG signals, 

like many biomedical signals, are highly non-stationary by their nature. Wavelet analysis has found a 

prominent position in the investigation of biomedical signals for its ability to analyze such signals, in 

particular EEG signals. Wavelet transform is capable of separating the signal energy among different 

frequency bands (i.e., different scales), achieving a good compromise between temporal and 

frequency resolution. The present study is an attempt to better understand the mechanisms causing 

epilepsy and accurate prediction of the occurrence of seizures. In the present paper we identify typical 

patterns of energy redistribution before and during a seizure using multi-resolution wavelet analysis. 

 

KEYWORDS: Electroencephalography, Epilepsy, Multi-resolution, Neuroscience, Power spectral 

density, Signal energy, Wavelet. 

  التخطيط الكهربي للدماغلتحليل الإشارات موجيات على طاقة وطريقة معتمدة 

  عبد الحسن صديقي و هوليا كودال سيفيندر

إن  الناتج عن إشارات الخلاٌا العصبٌة. لدماغلفروة االكهربً تسجٌل النشاط  هو التخطٌط الكهربً للدماغ  :ملخص
ٌسبب انحرافاً واضحاً عن  ًالصرع كهربٌة الدماغ هو فً حالات الصرع، إذ أن الحراك  الاستخدام الأساسً لتخطٌط

كهربٌة غٌر ثابتة بطبٌعتها كغٌرها من إشارات الطب الحٌوي. احتل هذه اللكهربٌة الدماغ. إشارات تخطٌط  ةالنسق المعروف
رته على تحلٌل هذه الإشارات إذ ٌمكن فصل تحلٌل الموٌجات مكاناً بارزاً فً دراسة إشارات الطب الحٌوي وذلك لمقد

الإشارات إلى نطاقات ترددٌة مختلفة بٌن عرضً وثابت. تهدف هذه الدراسة إلى فهم أفضل للآلٌة المسببة للصرع وتكهن 
دقٌق بحدوث نوباته. نمٌز فً هذه الورقة أنماط قٌاسٌة لإعادة توزٌع الطاقة قبل وأثناء نوبات الصرع باستخدام تحلٌل 

 لموٌجات متعددة القرارات. ا
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1.   Introduction 

pilepsy is a common brain disorder associated with abnormal neuronal activity. About 1% of the world 

population suffers from epilepsy and 30% of epileptic patients are not cured by medicine (NINDS 2001). Its 

major manifestation is the epileptic seizure which may involve a discrete part of the brain (partial) or the whole 

cerebral mass (generalized). EEG is the recording of electrical activity along the scalp produced by the firing of 

neurons within the brain. The main application of EEG is in the case of epilepsy, as epileptic activity can create 

clear abnormalities on a standard EEG study. Careful analysis of EEG records can provide valuable insight and 

improved understanding of the mechanisms causing epileptic disorders.  

The Fourier transform (FT) has been the traditional method applied to the analysis of time series signals for 

decades. Fourier coefficients are determined by the entire signal support and frequencies are not localized in 

time, since the infinite basis functions are used in FT. Consequently, Fourier analysis provides only globally 

time-averaged information, whereas it lacks any local behavior within the signal. Hence, it is suitable for 

extracting frequency information from stationary signals.   

EEG signals like many biomedical signals are non-stationary, and Fourier transform does not give an 

effective analysis for such signals. For non-stationary signals one method to partly overcome this difficulty is the 

usage of short-time Fourier transform, STFT (the windowed Fourier transform) in which the signal is multiplied 

by a sliding window of limited extent, considering the signal as quasi-stationary for such a short period. In 

essence, STFT extracts several frames of the signal to be analyzed with a window that moves with time. If the 

time window is sufficiently narrow, each frame extracted can be viewed as stationary so that Fourier transform 

can be used. With the window moving along the time axis, the relation between the variance of frequency and 

time can be identified. However the compromise between the temporal and frequency resolution, established by 

the window size, is the same for all frequencies.  

The wavelet transformation is well-suited to representing various aspects of EEG signals such as trends, 

discontinuities, and repeated patterns where other signal processing approaches fail. Wavelet is an effective 

time/frequency analysis tool for analyzing transient signals. In the wavelet transform (WT) case, WT employs a 

windowing technique with variable-size windows. Wavelets are mathematical functions that cut up data into 

different frequency components, and then study each component with a resolution matched to its scale. They 

have advantages over traditional Fourier methods in analyzing physical situations where the signal contains 

discontinuities and sharp spikes. The fundamental idea behind wavelets is to analyze according to scale.  

Wavelets are functions that satisfy certain mathematical requirements and are used in representing data or 

other functions. Approximation using superposition of functions has existed since the early 1800's; Joseph 

Fourier discovered that he could superpose sines and cosines to represent other functions. However, in wavelet 

analysis, the scale used to look at data has a special role. Wavelet algorithms process data at different scales or 

resolutions. If we look at a signal with a large window, we can notice gross features, and if we look at a signal 

with a small window, we can catch small features. This makes wavelets interesting and useful.  

Wavelets have been traced all the way back to Alfred Haar in 1910; however, the starting point of their 

modern history coincides with two publications in the 1980s by Mallat (1989) and Daubechies (1990). Mallat 

(1989) identified the important concept of multi-resolution analysis which is the corner stone of modern wavelet 

theory, while Daubechies (1990) constructed the first orthogonal wavelet bases that were compactly supported.  

Wavelets have become a tool of choice for scientists, leading to efficient solutions in time and space 

frequency analysis problems, as well as a number of other applications. Nowadays wavelet methods of analysis 

and representation have a significant impact on the science of medical imaging and the diagnosis of disease and 

screening protocols. Wavelet applications in medicine include, but are not limited to, capillary pressure, 

coronary artery disease, auditory nerve models, blood flow velocity, ECG timing, distortions and noise detection 

of abnormalities, heart rate variability, cardiac arrhythmias, ECG data compression, evoke potentials, epileptic 

seizures and epileptogenic foci, classification of EEG, pathological sounds, ultrasounds, and vibrations (blood 

flow heart and lung sounds), medical imaging (ultrasonic, magnetic resonance, optical images, computed 

tomography and others) electromyography signals and sleep apnea (Aldroubi and Unser, 1996). 

E 
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It may be emphasized that wavelet transform has been extensively applied to EEG with different purposes: 

analysis and characterization of epileptic activity (such as spikes, slow waves, polyspikes, sharp waves, etc.), in 

the perspective of obtaining clues on the processes underlying the onset of an epileptic attack (Attelis et al., 

1997; Bhandari et al., 2007; Gigola et al., 2004; Rosso et al., 2006), development of algorithms for the 

prediction and on-line/off-line automatic detection of epileptic seizures (Attelis et al., 1997, Gigola et al., 2004, 

Latka et al., 2003) in order to assist clinitians in monitoring hospitalized patients and reviewing EEG recordings 

as well as to improve the quality of life of epileptic subjects.  

In Inouye et al. (1990) a change of power spectrum in alpha frequency before the spike and wave 

complexes was reported. Fisher et al. (1992) reported that frequencies above 40 Hz are poorly visualized on 

conventional EEG scalp recordings, and that they have recorded frequency components up to 150 Hz in digitally 

recorded EEGs. High frequency increases were largely localized to the region of the seizure focus. In Inouye et 

al. (1994) structural changes were observed just before spike occurance during seizure. In Magosso et al. (2009) 

wavelet methods were applied to EEG data obtained from epileptic patients suffering from drug resistance 

temporal lobe seizures acquired at Bellaria Hospital (Bologna). In this particular paper, Magosso et al. (2009) 

analyzed the energy distribution of the EEG to determine if it is altered among the different scales of the wavelet 

representation and exhibits distinct patterns of energy redistribution. In the present work, we exploit the same 

approach for our data obtained at Kocaeli University’s Medical Hospital in Turkey to characterize the epileptic 

attack in quantitative terms and to obtain indications concerning the genesis of the seizure propagates among  

adjacent regions of the brain. We have obtained similar results for digitally recorded video EEG recordings for 

epileptic patients as Magosso et al. (2009). We have  shown that energy distribution of the EEG has altered 

among the different scales of wavelet representation at seizure onset and during the seizure. 

 

The paper is organized as follows. The first section gives an introduction. In the second section, wavelets 

and energy computation from wavelet coefficients will be introduced, while in the third section analysis of 

epileptic EEG will be discussed. In the last two sections, data, methodology, application to EEG and results are 

presented. 

2. Wavelet analysis and energy computation 

The wavelet is a quickly vanishing oscillation function localized both in frequency and time. In both 

continuous and discrete forms of wavelet analysis, the signal is decomposed into scaled and translated versions 

 
,a b t  of a single function  t  called the mother wavelet:  

 
,

1
,a b

t a
t

ba

 
   

 
                                                                 (1)                                                        

where a and b are the scale and translation parameters, respectively, with ,a b   and 0.a   If a signal  f t  is 

a square integrable function of time, i.e.  2f L   (the space of finite energy signals), then the continuous 

wavelet transform (CWT) of the signal is defined as 

                                               
, ,

1
, * ,a b a b

t b
W a b C f t dt f

aa
 





 
    

 
                                 (2)            

where ,   means the inner product and the superscript * means complex conjugate. The factor 1 a  is used to 

normalize the energy so that it stays at the same level for different values of a and b. The wavelet function 

 
,a b t  becomes narrower when a is increased, and displaced in time when b is varied. Therefore, a is called 

the scaling parameter which captures the local frequency content and b is called the translation parameter which 

localizes the wavelet basis function at time t b and its neighborhood. CWT at every possible scale a and 

translation b provides a redundant representation of the signal; hence CWT requires a heavy burden of 
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computations compared to the discrete wave transform (DWT). DWT provides sufficient information both for 

analysis and synthesis of the original signal, with a significant reduction in the computation time. The filters of 

different cutoff frequencies can be used to analyze the signal at different scales. The signal is passed through a 

series of high pass filters to analyze the high frequencies, and it is passed through a series of low pass filters to 

analyze the low frequencies (Addison, 2002). 

The DWT is obtained by discretizing the parameters a and b. We may choose 2 ,ja   2 jb k   with 

, .i j Z   By substituting this in (1) we get                         

    2
, 2 2 .j j

j k t t k                                                               (3) 

The DWT can be written as   

                                                      2
, ,2 2 ,j j

j k t kd f t t k dt f




                             (4) 

where ,j kd  are known as wavelet (or detailed) coefficients at scale j and location k. The wavelet coefficients 

,j kd  measure the amount of fluctuation about the point 2 jt k   with a frequency determined by the dilation 

index j. 

Appropriate selection of mother wavelet   lets the family   , ,j k t j k Z  form an orthonormal basis 

for 2
( )L  . In that case, the original signal can be reconstructed from the resulting wavelet coefficients 

accurately and efficiently without any loss of information (Strang, 1996); the number of wavelet coefficients will 

be the same as the number of data points in the original signal. In other words, the DWT discards all redundant 

information in CWT by employing a set of orthogonal basis functions. Furthermore, the DWT may be 

interpreted in terms of a multi-resolution analysis, where a hierarchy of approximation and details of the signal is 

constructed in nested subspaces of 
2

( )L  . 

Multi-resolution scheme provides an effective way of implementing DWT (Mallat, 1989). In this scheme, 

the square integrable space 
2

( )L   is decomposed into a direct sum of the subspaces ,jW  j from   to ,  

2
3 2 1( )L W W W       0 1 2 3W W W W    . 

If the closed subspaces jV  are defined as  

1 2 3 ,j j j jV W W W       for all  j   

where   indicates direct sum, then the subspaces jV  are a multi-resolution approximation of the square 

integrable space 2
L  and can be obtained from dilation and translation of a single scale function , ( ).j k t  Thus, 

the subspaces jW  are the orthogonal complementary of the subspaces jV : 1j j jV V W    for all .j    

Given a signal  ,f t  its multi-resolution decomposition formula at level H is defined as             

/2 /2
, ,( ) 2 (2 ) 2 (2 ) ( ) ( ) ,

H H
H H j j

H k j k H j
k j k j

f t a t k d t k A t D t 
 

   

   

                  (5) 

( )t  is the mother wavelet, while   is a companion function, called the scaling function: 

/2
, ( ) 2 (2 )

j j
j k t t k 

 
   

are scaled and translated versions of the original scaling function  .t  ,H ka  represent approximation or 

scaling coefficients at level H, and defined as  

, ,,H k H ka f   
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Extending decomposition over all resolution levels, the complete wavelet expansion can be obtained as 

                                        
/2

,( ) 2 (2 ) .j j
j k

j k

f t d t k
 

 

 

                                      (6) 

It expresses the synthesis of the original signal from wavelet coefficients. In each level j, the series in (6) 

has the property of complete oscillation (Chui, 1992), which makes the decomposition useful in applications to 

time localization of events.  

By using down-sampling operations along with low-pass and high-pass filtering, signal decomposition as 

in (5) can be efficiently implemented (fast pyramid algorithm). It is important that the two filters are related to 

each other, and they are known as a quadrature mirror filter. The high-pass filters are associated with the wavelet 

functions , ( ),j k t  while the low-pass filters are associated with the scaling functions , ( ).j k t  At each 

decomposition step this pair of filters decomposes the signal into low-frequency components (approximation 

coefficients), and high-frequency components (details coefficients). Filtering is applied first to the original 

signal, and then recursively, to the approximation series only. At every iteration, the output of each filter is 

down-sampled by a factor of 2 (decimation) halving the data each time. The down-sampling is done to give 

speed to the algorithm, reducing the computation at each iteration geometrically (after J iteration the number of 

samples being manipulated shrinks by 2M ). 

Let the signal be of finite length, say N and 2 .MN   Let sT denote the sampling time. Theoretically, 

wavelet decomposition may involve all scales from negative to positive infinity as seen in (6). In practice, 

wavelet decomposition is applied to discrete signals. Since there is not enough resolution between two 

consecutive samples to construct finer details at scales 0,j   the sample values of the signal are generally taken 

as the signal approximation coefficients at scale 0j   and the analysis is limited only to positive scales (Siddiqi, 

2004). The approximated and detailed signals at scale j will have only 2M j samples each, because of the down 

sampling operation. Coefficients at each scale j are placed at instant  , 2 0, , 2 1 .j M j
j k st k T k     Hence, 

the range of scales that can be investigated is 1 ,j M   since the decomposition can proceed only until the 

individual details contain a single coefficient. 

If the decomposition is done for all resolution levels M, the wavelet expansion will be 

2 1
/2

,
1 0

( ) 2 (2 ) ,

M j
M

j j
j k

j k

f t d t k




 

 

                                                          (7) 

where k starts from 0 since we assume, without loss of generality, that the signal starts from 0t  . 

Scalograms are the graphical representation of the square of the wavelet coefficients for the different 

scales. They are an isometric view of the sequence of the wavelet coefficients versus wavelength. A scalogram 

clearly shows more details, identifies the exact location/time and detects low-frequency cyclicity of the signal. 

The scalogram surface highlights the location (depth) and scale (wavelength) of dominant energetic features 

within the signal. The combination of the various vectors of coefficients at different scales (wavelengths) forms 

the scalogram. The depths (location/time) with the largest (strongest) coefficients indicate the position where the 

particular wavelength change is taking place. The scalogram provides a good space-frequency representation of 

the signal. The scale 'a' is related to the frequency by    

0f
a

f
                                                                       (8)  

 where 0f  is the frequency of the mother wavelet. 

When the family     2
, 2 2j j

j k t t k     is an orthonormal basis in 
2

( )L  , the concept of energy 

is linked with the usual notions derived from the Fourier theory, and the sum of the square of the coefficients of 

the series is the energy of the function, i.e. the energy series associated with coefficient series is given by 
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                                       2
, ,| |j k j kE d                                                                       (9) 

 and the overall energy at resolution j is  

 
2 1

2
,

0

| |

M j

j j k
k

E d

 



                                                                      (10) 

The total energy associated with the entire signal can be obtained as 

     
2 1

2
,

1 0

| |

M jM

tot j k
j k

E d

 

 

                               (11) 

Energy coefficients as computed by (9) have a different localization and density over the temporal axis, 

depending on the scale: at scale j, the coefficients are placed at instants 2 , 0, , 2 1.j M j
sk T k    Thus, to 

study and to compare the temporal evolution of energy at different scales, it is necessary to recover for the 

halved time resolution at each scale due to the down-sampling operation. In the following, two methods which 

allow uniformly time distributed atoms of energy to be obtained across all scales will be intoduced. In the last 

section these methods will be applied to the analysis of the EEG data. 

2.1 Grouping and spreading-out energy coefficients 

In this method the original signal will be divided into non-overlapping temporal windows of fixed length 

2J
sL T . Here 2J is the number of signal samples falling within the window, and an atom of energy within 

each window at every resolution level j will be computed. Two different cases have to be considered: 

 

Case a) J j : In this case, at each scale j ( 1, , ),j M the assigned window contains 2J j energy coefficients. 

The atom of energy within the window n ( 0,1, , 1)Wn N   can be computed by grouping all the energy 

coefficients falling within the window: 

1

, , 1 1

0 2 1, 0 ,
ˆ

(2 1)2 (2 1)2 1, 1, , 2 1

J j

j n j k J j J j M Jk

k n
E E

n k n n

 

    

    
  

      

             (12) 

The centre point of the corresponding time window will be set according to (12), so the first window will 

be centered on 0, and half of the coefficients contained in it are null. Thus for each scale, a series of WN energy 

atoms are uniformly time distributed with a time resolution 2 .J
J st T   

 

Case b) j J : This means that coefficients at some scale have a time resolution lower than L. In other words 

there is a scale *j  within the decomposition  1 *j M   such that * .j J  In this case again (12) can be used 

for each scale j J  as before to group energy coefficients within a window. At scale *j J  no processing is 

required for energy coefficients, because they have the desired time resolution. However for coefficients at scale 

j J  we use  

                          
,

,
ˆ round , 0, , 2 1 ,

2 2

j k M J
j n j J j -J

E n
E k n




   

 
 
 

                                (13) 

where the function  round x  rounds x to the nearest integer. 

 

Therefore the total energy within a time window n can be obtained by 

           , ,
1

ˆ ˆ
M

tot n j n
j

E E


  ,                                                                      (14) 
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and the relative energy associated with the resolution j in the time window n can be obtained by 

,
,

,

ˆ
ˆ

ˆ

j n
j n

tot n

E

E
                                                                              (15) 

2.2 Averaging energy coefficients 

In this method atoms of moving average energy will be computed. Series of moving average energy can be 

computed according to the following equation  

, ,

0 2 1, 0
1

1 1
fix 1 fix 2 , 1, , 2 2 ,2

2 2

J j

j n j k J j M JJ j
k

j j

k n

E E n n
k n





   

   
     



    
    

   

                  (16) 

where the functions  fix x rounds x to the nearest integer towards zero. 

The total means energy within a time window n  0,1, , 2 2M Jn    is given by 

 , ,1 ,M
tot n j njE E                                                              (17) 

and the relative mean energy is defined as 

                                                          
,

,
,

ˆ
j n

j n
tot n

E

E
                                                                       (18) 

3. Analysis of epileptic EEG 

EEG is a record of electrical potential generated by cerebral cortex nerve cells (Latka et al., 2003). Careful 

analysis of EEG records can provide valuable insight and improved understanding of the mechanisms causing 

epileptic disorders. Wavelet transformation, which is known as mathematical prism or microscope, is being 

exploited for the analysis and proper understanding of the EEG records (Attelis et al., 1997; Magosso et al., 

2009; Adeli et al., 2003; Furati et al., 2006; Gigola et al., 2004; Mallat, 1989). Siddiqi et al. (2009) have 

analyzed EEG’s of epileptic and normal persons through energy distribution among different approximate and 

detailed levels. Any  redistribution may indicate change in the characteristics of the EEG signal which in turn 

may represent specific events in the course of seizure. It may be remarked that if the information of a signal in 

general, or an EEG signal in particular, carrying specific information consists of different components, each 

individual component makes a different contribution to the total signal. For instance, each person’s voice is of 

different wavelet frequency scale characteristics; that is, the individual frequencies make a different contribution 

to the total energy of the voice. Therefore the signal can be distinguished by the characteristics of its energy 

spectrum.  

To set up the correlation between target signal and the wavelet energy spectrum we must build up a model 

database (Bhandari  et al., 2007; Furati et al., 2006; Gencay et al., 2002; Iske and Randen, 2006; Manchanda et 

al., 2007; Percival and Walden, 2000; Rivera, 2003; Siddiqi, 2004; Siddiqi et al., 2007; Yue et al., 2005; Yue 

and Tao, 2006) combining a series of specific models that are distinguished from one another. In the model 

database each model should have a group model signal. The energy spectrums of these model signals are 

obtained by applying wavelet transform. It may be emphasized that wavelet transform has been extensively 

applied to EEG with different purposes: analysis and characterization of epileptic activity (such as spikes, slow 

waves, polyspikes, sharp waves, etc.), in the perspective of obtaining clues on the processing underlying the 

onset of an epileptic attack (Gigola et al., 2004; Attellis et al., 1997; Rosso et al., 2006).  

Development of algorithms for the prediction and on-line/off-line automatic detection of epileptic seizures 

(Attellis et al., 1997; Gigola et al., 2004; Latka et al., 2003) in order to assist clinitians in monitoring 

hospitalized patients and reviewing EEG recordings as well as to improve the quality of life of epileptic subjects. 
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In Magosso et al. (2009) wavelet methods have been applied to EEG data obtained from epileptic patients 

suffering from drug resistance temporal lobe seizures acquired at Bellaria Hospital (Bologna). The objective of 

this study is to analyse whether the energy distribution of the EEG is altered among the different scales of the 

wavelet representation and exhibit distinct patterns of energy redistribution. This information may be exploited 

to characterize the epileptic attack in quantitative terms and to obtain indications concerning the genesis of the 

seizure propagates among adjacent regions of the brain.  

 

 
 

Figure 1. International 10-20 EEG recording system. 

4. Data and methodology  

In this study we collected data of 30 epileptic patients suffering from temporal lobe seizures at Medical 

School's Hospital of Kocaeli University. Data were recorded by the neurology laboratory of the hospital by using 

the International 10-20 recording system (see Figure 1) using a digital EEG recording device. The scalp EEG 

recording was used since most hospitals have limited or no usage of intracerebral EEG recordings. Using scalp 

EEG recordings we get the same major modifications of frequency and of energy distribution as with 

intracerebral EEG recording. The signals were sampled at 200 Hz and stored on a 32–64 channel computerized 

video-EEG system. Each patient was hospitalized for EEG video monitoring for several hours, and seizures in 

their EEG were detected visually. The data were cut into small pieces containing a few minutes before and after 

the seizures. The multi-resolution wavelet analysis was applied to all channels using the Daubechies order 4 

wavelet (Db4). Each EEG signal was decomposed into seven resolution levels, in order to consider all frequency 

bands which are commonly considered in the analysis of EEG signals. 

 

5. Application and concluding remarks 

Figure 2 shows the 7-level decomposition of T6–O2 channel from one patient, with seizure activity starting 

at 115t  s. The signal(s), the seven levels of details (D1–D7) and the residual approximation (A7) are shown in 

the Figure. The approximation and detail records are reconstructed from the scaling coefficients and wavelet 

coefficients, respectively. The original signal is the superimposition of details D1–D7 and approximation A7.  

Figure 3 shows the power spectral density (PSD) of the details and approximation estimated with the 

Welch’s method. The frequency components captured by details move from the high-frequencies towards the 

low-frequencies as scale increases from 1 to 7 (35–100 Hz at scale 1 vs. 0.75–1.5 Hz at scale 7), whereas 

approximation A7 contains all the residual lower frequency information (<0.75 Hz) of the signal for our data. 

From Figure 3 the spectra clearly indicate the frequency content captured by each detail and the approximation.    
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Figure 2. T6–O2 channel of the signal(s) and its wavelet decompositio using Db4. 

 

 
Figure 3. Power spectrum density (PSD) of the details and approximation. 

 

An important aspect in the analysis of EEGs during epilepsy is the energy redistribution among the 

different details; this redistribution may indicate changes in the characteristics of EEG signals which, in turn, 

may represent specific events in the course of seizure. In order to characterize the temporal evolution of the 

energy redistribution of EEG signals, the signal was divided into moving average windows each with a duration 

2J
sL T (where sT is the sample time) and the energy of all details were computed within each window. In 
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particular, all energy atoms at the same resolution level, contained within the same window, were summed up to 

have energy at that particular level (see (14)). 

 

 
Figure 4. Total energy of the signal(s) and the relative energies contained in each detail D4–D7. 

 

 
65s                                       70 s                                           75s                                           80s 

 
85s                                          90s                                           95s                                         100s 

 
105s                                          110s                                        115s                                       120s 

 

Figure 5. Snapshots of the relative energy distribution in all EEG channels for a patient with temporal lobe epilepsy. 
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Figure 6. 2-D scalogram of T6–O2 channel of the signal(s). 

 

In Figure 5 snapshots of the relative energy distribution in all EEG channels for a patient with temporal 

lobe epilepsy just before seizure ( 65t  s), at seizure beginning ( 105t  s), and during several seconds of seizure 

with reference to detail 4 can be seen. Different colors indicate different relative energy; dark blue for colored 

pictures (light grey for black/white pictures) show values close to zero, while dark red (light grey) shows 

approximately 0.6 or higher values.  

Figures 6 and 7 show, respectively, 2-D and 3-D scalograms of T6–O2 channel of the signal(s) and 

confirm the seizure. The depths (location/time) with the largest (strongest) coefficients indicate the position 

where the particular wavelength change is taking place. 
 

 
Figure 7. 3-D scalogram of T6–O2 channel of the signal(s). 

 

Our results show that EEG recordings of epileptic patients exhibit a rearrangement of relative energy 

among the different frequency bands just before and during seizure. Our analysis confirms this result specifically 

for patients with temporal lobe epilepsy. However this relocation of the energy is not the same at all channels.  
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