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ABSTRACT: The Fibonacci groups are defined by the presentation ),( nrF  

,,,:,,, 213212121    rrrrn aaaaaaaaaaa ,11 rrn aaaa  where 0r , 

0n  and all subscripts are assumed to be reduced modulo n . In this paper we give an alternative 

proof that for 0r  , (2 , 4 2)F r r  , (4 3, 8 8)F r r   and (4 5, 8 12)F r r   are all infinite by 

establishing a morphism (or group homomorphism) onto the dihedral group nD  for all 2n  .1 

 

Keywords: Group; Fibonacci group; Dihedral group; (homo) Morphism.  

 مجموعات دايهيدرل كصورة متماثلة لمجموعات فيبوناتشى

  يبشير علو  عبدالله عمر

 انتمثيم  بىاسطت تعسف مجمىعاث فيبىناتشيتعسّف ملخص : 

1 2 1 2 3 1 2 1 1( , ) , ,..., : , , ... ,..., ...n r r n r rF r n a a a a a a a a a a a a     

,0 عندما تكىن   0n r  ،r r na a   1نكم,...,r n. 

2) بأن،  في هرا انبحث بسهانا بديلا نعطي  , 4 2)F r r  ،(4 3, 8 8)F r r  4)و 5, 8 12)F r r   في جمعيها لا منتهيت

0r  حانت بىاسطت إيجاد دانت شمسة متماثهت وفىقيه عهى انصمسة وذنك nD 2 نكمn . 

 

 : مجمىعاث ، مجمىعاث فيبىناتشي ، مجمىعاث دايهيدزل ، تشابه شكهي.  مفتاح الكلمات

1. Introduction 

For 1r   and 1n   the Fibonacci group ( , )F r n  is defined by the presentation: 

 

1 2 1 2 1 2 3 1 2 1 1( , ) , , , : , , ,n r r r r n r rF r n a a a a a a a a a a a a a a a       , 

 

where all subscripts are assumed to be reduced modulo n , if necessary. These groups were first introduced by 

Conway (1965) and have been studied over the last few decades. For a nice survey article see (Thomas, 1991) or 

(Campbell et al., 1992). 

 

The dihedral group of order 2n  denoted by nD  is usually defined by 

.,1:, 12 xyyxyxyxD n

n  
                                        (1) 

 

It is well known that x and y in Dn satisfy the relations summarized in the next lemma. 

 

Lemma 1.1 For all 0 1k n    we have  
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(a) ;knk xx    

(b) ;1 yy 
 

(c) ;yxyx knk   

(d) ;1)( 2 yxk
 

(e) ;yyxx kk   

(f) .knk xyyx   

Thus we may write the elements of 
nD  uniquely as 

kx or yx k
 for 0, 1, 2, , 1.k n   

 

Campbell et al. (2004) explored the connection between the Fibonacci groups and finite groups via the concept of 

Fibonacci length. In the case where the finite groups were dihedral they obtained satisfactory results. In this note we 

further explore the connection between the Fibonacci groups and dihedral groups in a different manner. In particular, 

we establish epimorphisms between Fibonacci groups in certain classes and all finite dihedral groups of order greater 

than 4, thus giving alternative proofs regarding the infiniteness of the groups in these classes of Fibonacci groups. For 

basic concepts in group theory we refer the reader to (Gallian, 1998). The following lemma for ),( nrF  is 

indispensable for our discourse. 

 

Lemma 1.2 For all 0r  and 2m   we have 
1 2

1 1m r m m ra a a

    in ( , )F r n .
 

Proof. 

1211

1

111 )( 



  rmrmmmmmrmmmrm aaaaaaaaaa 
 

.2

1

1

1 



 rmm aa  

2. Morphic Images 

First we consider the Fibonacci groups (2 , 4 2).F r r   

Theorem 2.1 Let 0.r   There exist morphisms from (2 , 4 2)F r r  onto 
n

D for all 3n  . Hence 

(2 , 4 2)F r r   is infinite.  

 

We are going to prove this theorem via a sequence of lemmas. However, we first define a mapping from the first 

2r  generators of (2 , 4 2)F r r  onto the generators of 
nD  by 

xax  and ( 2, 3, ... , 2 ).
i

a y i r        (2) 

Then the next lemma gives the images of the remaining generators:
 

.,,, 142212  rrr aaa   

 

Lemma 2.2 

 

(a) );1(12  rxya r   

(b) );1(1

22 

 rxa n

r   

(c) );1(2

32  ryxa r   

(d) 
2 ( 2r i ra y   and 4 2 1).i r    

 

Proof. Using Lemma 1.2 we see that 

(a) );1(12

22112  

 rxyxyaaaa r

rr   

(b) );1()( 1212

12

1

122  





 rxxyxaaa n

rr   

(c) );1()( 22112

22

1

232  





 ryxxyaaa n

rr   

(d) This proof is by induction. 

 

Basis step: By Lemma 1.2 and (c) above, we see that 

.)( 2212

32

1

342 yyxyaaa rr  





   

Inductive step: Suppose that ya ir 2  (for some 4 2i r  ). Using Lemma 1.2 again we see that 

1 2 1 2

2 1 2 ,r i i r ia a a y y y 

   
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as required. 

Lemma 2.3 For 1r   we have 

 

(a) );1(24  rxya r   

(b) ;341 xaa r   

(c) 
2 4

(4 2 2).
i r i

i ra a y
 

    

 

Proof. Using Lemmas 1.2 and 2.2 we see that 

(a) ;)( 212
14

1
1224 xyyxyaaa rrr  



   

(b) ;)( 22
24

1
2234 xxyxaaa rrr  


   

(c) This proof is by induction. 

 

Basis step: By Lemma 1.2 and (b) above, we see that 

.)( 2122

34

1

3244 yxyxaaa rrr  





   

 

Inductive step: Suppose that ya ir 4  (for some 4 2 1i r   ). Using Lemma 1.2 again we see that 

,212

4

1

214 yyyaaa iririr  





 
 

as required. 

 

It is now clear from Lemmas 2.2 and 2.3 that the mapping defined in (2) is indeed a morphism onto 
nD , which 

preserves all the relations of (2 , 4 2)F r r  and so Theorem 2.1 is proved. 

 

Next we consider the Fibonacci groups (4 3, 8 8).F r r   

 

Theorem 2.4 Let .0r  There exist morphisms from (4 3, 8 8)F r r  onto nD for all 3n  . Hence 

(4 3, 8 8)F r r  is infinite. 

 

As in the previous case, we are going to prove this theorem via a sequence of lemmas. First, we define a mapping 

from the first 34 r
 
generators of (4 3, 8 8)F r r   onto the generators of 

nD  by  

xaa ri 32,   and  ,yai         
 (3) 

where 32,342  riri and 0r . Then the next two lemmas give the images of the remaining 

generators: .,,, 885444  rrr aaa   

 

Lemma 2.5 For 0r  we have 

(a) ;44 ya r   

(b) ;1

54





n

r xa   

(c) ;2

64 yxa r   

(d) 4 (7 2 6).r i i ra y     

 

Proof . Using Lemma 1.2 we see that  

(a) 
2 1 2

4 4 1 2 4 3 ;r r

r ra a a a xy xy y

    

(b) 
1 2 1 2 1

4 5 1 4 4 ;n

r ra a a x y x  

    

(c) ;)( 22112

54

1

264 yxxyaaa n

rr  





   

(d) This proof is by induction. 

 

Basis step: By Lemma 1.2 and (c) above, we see that 
1 2 1 2 2

4 7 3 4 6 ( ) .r ra a a y x y y 

  
 

Inductive step: Suppose that ya ir 4  (for some 7 2 5i r   ). Using Lemma 1.2 and the induction 
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hypothesis we see that 

,212

4

1

314 yyyaaa iriir  





   

as required. 

 

Lemma 2.6 For 0r  we have 

(a) ;1

76





n

r xa   

(b) ;2

86 yxa r   

(c) 
6

(9 2 8).
r i

a y i r


    

 

Proof. Using Lemmas 1.2 and 2.5 we see that 

(a) ;1212

66

1

3276







  n

rrr xyxaaa   

(b) ;)( 22112

76

1

4286 yxxyaaa n

rrr  





   

(c) This proof is by induction. 
 

Basis step: For 9i  , we see tha 

.)( 2212

86

1

5296 yyxyaaa rrr  





 
 

Inductive step: Suppose that ya ir 6  (for some 9 2 7i r   ). Then using Lemma 1.2, the fact that 9i   

and induction hypothesis we see that 

,212

6

1

)32(16 yyyaaa iririr  





   

as required. 

 

Lemma 2.7 for 0r   we have
 

(a) ;981 xaa r   

(b) 
8 8

(10 2 10).
i r i

a a y i r
 
     

 

Proof. Using Lemmas 1.2, 2.5 and 2.6 we see that 

(a) ;)( 2112

88

1

5498 xyxaaa n

rrr  





   

(b) for 10 2 10,i r    we use induction. 

 

Basis step: For 10i  , we see that 

 

.)( 2122

1)88(

1

642)88( yxyxaaa rrr  





   

Inductive step: Suppose that 
8r ia y

 (for some 10 2 9i r   ). Then using Lemma 1.2, (a) above and the 

induction hypothesis we see that 
1 2 1 2

8 1 4 3 8 ,r i r i r ia a a y y y 

       

as required. 

 

Lemma 2.8 For 0r
 
we have 

(a) ;)112(832 xaa rrr    

(b) 8 8 (2 12 4 11).i r i r i ra a y       

 

Proof. Using Lemmas 1.2, 2.6 and 2.7 we see that 

(a) ;)( 2112

)102(8

1

)72(4)112(8 xyxaaa n

rrrrrr  





   

(b) for 2 12 4 11r i r   
 
we use induction. 

 

Basis step: For 2 12,i r   we see that  

.)( 2122

)112(8

1

)82(4)122(8 yxyxaaa rrrrrr  





   
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Inductive step: Suppose that ya ir 8
 (for some 2 12 4 10r i r    ). Then using Lemma 1.2 (a) above 

and the induction hypothesis we see that 

,212

8

1

3418 yyyaaa iririr  





   

as required. 

 

It is now clear from Lemmas 2.5, 2.6, 2.7 and 2.8 that the mapping defined in (3) is indeed a morphism onto 

,nD which preserves all the relations of (4 3, 8 8)F r r   and so Theorem 2.4 is proved. 

 

Finally we consider the Fibonacci groups (4 5, 8 12)F r r  .  

 

Theorem 2.9 Let 0r . There exist morphisms from (4 5, 8 12)F r r  onto
nD for all 3.n   Hence 

(4 5, 8 12)F r r  is infinite. 

 

As in the previous cases, we are going to prove this theorem via a sequence of lemmas. However, since the 

proofs are similar to the previous case we are going to state the corresponding results without proofs. We first define a 

mapping from the first 4 5r  generators of  4 5, 8 12F r r   onto the generators of nD by 

 

1 2 3, ra a x  and ,ia y            (4) 

 

where 32,542  riri and 0r . Analogously to Lemma 2.5 we have 

 

Lemma 2.10 For 0r   

(a) ;64 ya r   

(b) ;1

74





n

r xa   

(c) ;2

84 yxa r   

(d) ).829(4  riya ir   

 

 

Analogously to Lemma 2.6 we have 

 

Lemma 2.11 For 0r   we have.  

(a) ;1

96





n

r xa   

(b) ;2

106 yxa r   

(c) 
6 (11 2 12).r i i ra y     

 

Analogously to Lemma 2.7 we have 

 

Lemma 2.12 For 0r  we have  

(a) ;1381 xaa r   

(b) 12 8 (14 2 14).i r i i ra a y      

 

Analogously to Lemma 2.8 we have 

 

Lemma 2.13 For 0r  we have 

(a) ;)152(832 xaa rrr    

(b) 12 8 (2 16 4 17).i r i r i ra a y       

 

It is now clear from Lemmas 2.10, 2.11, 2.12 and 2.13 that the mapping defined in (4) is indeed a morphism onto 

nD , which preserves all the relations of (4 5,8 12)F r r 
 
and so Theorem 2.9 is proved. 
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