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ABSTRACT: The Fibonacci groups are defined by the presentation F (r,n) =
(a,,8,,....,a, @@, -8, =8,5,8,8; 8,3 =8,,,..., 8,8 -85 =4 ), where >0,

n > 0 and all subscripts are assumed to be reduced modulo n. In this paper we give an alternative
proof that for r>0, F(2r,4r+2), F(4r+3,8r+8) and F(4r+5,8r+12) are all infinite by

establishing a morphism (or group homomorphism) onto the dihedral group D, for all n> 2 !
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1. Introduction

For r >1 and n>1 the Fibonacci group F(r,n) is defined by the presentation:

F(r, n) = <a1’a2""'an : a1a2 '”ar = ar+1’a2a3'”a‘r+1 = ar+2""' anal'”ar—l = ar> '
where all subscripts are assumed to be reduced modulo N, if necessary. These groups were first introduced by

Conway (1965) and have been studied over the last few decades. For a nice survey article see (Thomas, 1991) or
(Campbell et al., 1992).

The dihedral group of order 2n denoted by D, is usually defined by
D, =(xy:x" =y’ =1 yx* =xy) &)
It is well known that x and y in D, satisfy the relations summarized in the next lemma.

Lemma 1.1 Forall 0 <k <n-1 we have
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(@) x* =x"*;
)y =y;
(© yx* =x""y;
@ (x“y)* =1,
(&) x“yx* =vy;
() yx“y =x"".
Thus we may write the elements of D, uniquely as x* or Xky for k=0,1,2,...,n-1.

Campbell et al. (2004) explored the connection between the Fibonacci groups and finite groups via the concept of
Fibonacci length. In the case where the finite groups were dihedral they obtained satisfactory results. In this note we
further explore the connection between the Fibonacci groups and dihedral groups in a different manner. In particular,
we establish epimorphisms between Fibonacci groups in certain classes and all finite dihedral groups of order greater
than 4, thus giving alternative proofs regarding the infiniteness of the groups in these classes of Fibonacci groups. For

basic concepts in group theory we refer the reader to (Gallian, 1998). The following lemma for F(r,n) is
indispensable for our discourse.

Lemma 1.2 Forall r >0and m>2 wehave a_,, = a,;l_larfw_l in F(r,n).
Proof.
-1
a = a am+l o 'a‘m+r—1 = a‘m—l (am—la am-*—l o 'am+r—2)am+r—1

m-+r m m
2

m+r—1*

= a’a
2. Morphic Images

First we consider the Fibonacci groups F(2r, 4r + 2).

Theorem 2.1 Let r > 0. There exist morphisms from F(2r, 4r +2)onto D, for all n>3. Hence
F(2r,4r +2) isinfinite.

We are going to prove this theorem via a sequence of lemmas. However, we first define a mapping from the first
2r generators of F(2r, 4r + 2)onto the generators of D, by

a,—>Xand a = y([i=23..,2r). 2)

Then the next lemma gives the images of the remaining generators: @, ,,,8,,,5,° ", 84,44-

Lemma 2.2

(@) a,,,, > Xy (r>1);

() a,,,, — X" (r>1);

(©) a5 > X2y (r>1);

d)a,, > y(r=2and 4<i<2r+1l).

Proof. Using Lemma 1.2 we see that
(8) 8y, =848, -8y, > XY =Xy (r>1);
(b) @y, =2, 5, > X (Xy)" =x""(r 21);
(©) 8,5 =885, >y (X")? =X’y (r=1);
(d) This proof is by induction.
Basis step: By Lemma 1.2 and (c) above, we see that
g = aglazzwa >y (X)) =y.
> Y (for some 4 <i < 2r). Using Lemma 1.2 again we see that

a2r+i+1 = a'ﬁ%wi = y71y2 = yi

Inductive step: Suppose that a

2r+i
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as required.
Lemma 2.3 For r >1 we have

(@) 8y > Xy (r21);
(b) & =ay 3> X
©a,=a, >y@l<i<ar+2).

— “ar+i

Proof. Using Lemmas 1.2 and 2.2 we see that
-1 2 -1,,2 .

(@) 8gr12 =580 > (XY) YT =XY;
142 2 .

(0) @yris =85 2850, P> X(XY)" =X

(c) This proof is by induction.

Basis step: By Lemma 1.2 and (b) above, we see that
-1 2 2 -1,,2
a4r-¢—4 =a a4r+3 = (X y) X" = y

r+3

Inductive step: Suppose that a > Y (for some 4 <i<2r+1). Using Lemma 1.2 again we see that

-1 2 -1,,2
a4r+i+l = a2r+i a‘4r+i = y y = yl

Ar+i

as required.

It is now clear from Lemmas 2.2 and 2.3 that the mapping defined in (2) is indeed a morphism onto D, , which
preserves all the relations of F(2r, 4r +2) and so Theorem 2.1 is proved.

Next we consider the Fibonacci groups F (4r +3, 8r +38).

Theorem 2.4 Let r>0. There exist morphisms from F(4r+3,8r+8)onto D, for alln>3. Hence
F (4r +3, 8r +8)is infinite.

As in the previous case, we are going to prove this theorem via a sequence of lemmas. First, we define a mapping
from the first 4r 4+ 3 generators of F(4r +3, 8r +8) onto the generators of D by

a,,8, . X and @ > Y, ®)
where 2<i<4r+3,i#2r+3and r>0. Then the next two lemmas give the images of the remaining

generators: 8,,,,,84, .5, "1 Agr.g-

Lemma 2.5 For r > 0 we have
@) 84,4 MY,

(b) 8ypps > X"

(C) a4r+
d) a,

6 > X2y,
>y (7<i<2r+6).

r+i

Proof . Using Lemma 1.2 we see that

(@) Qg =33, -8y 5 > xy* ixy* =y;
(b) a5 = aiilajrw = Xily2 =x"7

(©) Ay = agla§r+5 = )/71()(l171)2 = Xzy;
(d) This proof is by induction.

Basis step: By Lemma 1.2 and (c) above, we see that
-1,52 17,2\ ,)\2
Q7 = Yy s Y (x7y) =vy.

Inductive step: Suppose thata, . —> Y (for some 7 <i<2r+5). Using Lemma 1.2 and the induction

Ar+i
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hypothesis we see that
-1 42 -1,,2
a'4r+i+l = a'i—3a4r+i = y y = y’

as required.
Lemma 2.6 For r >0 we have
(@) Qg7 > X"

2. ,.
(b) &g, > XY,
() a,,—>Yy(@©O<i<2r+8).

Proof. Using Lemmas 1.2 and 2.5 we see that
-1 2 -1.,2 n-1.
(@) Qg7 = Ay 38616 F> X YT =X
142 -1y n-112 2.,
(0) Agrig = praeriy —> Y (XT)T =Xy,
(c) This proof is by induction.

Basis step: For i =9, we see tha
142 174,22
Qgrig = Qoriseris > Y (XTY)T =Y.

Inductive step: Suppose that ag,,; > Y (for some 9<i<2r+7). Then using Lemma 1.2, the fact that i >9

and induction hypothesis we see that

-1 2 -1,,2
a6r+i+l = a(2r—3)+ia6r+i = y y = y!
as required.

Lemma 2.7 for r >0 we have
(@) & =ag.,9 X
(b) 8, =a,, — Yy @0<i<2r+10).

Proof. Using Lemmas 1.2, 2.5 and 2.6 we see that
(3.) a8r+9 = a7}+5a§r+8 = (Xnil)il y2 = X;
(b) for 10 <i < 2r +10, we use induction.

Basis step: For i =10, we see that

-1 2 2 -1,,2
AQgrig)yr2 = AarieQ(gregyn (X7y) " x* =y.
Inductive step: Suppose that ag,,; >y (for some 10 <i <2r+9). Then using Lemma 1.2, (a) above and the
induction hypothesis we see that

-1 2 -1,,2
Bgriin =i Y Y =Y,
as required.

Lemma 2.8 For r >0 we have
@) Ayri3 = Bgryorany > X
(b) a_g=2a,.,; > Y (@2r+12<i<4r+11).

Proof. Using Lemmas 1.2, 2.6 and 2.7 we see that

=) 2 n-1y-1,,2 )
(@) Agri2r11) = Barsarsny@aricarsaey > (X)) Ty =X

(b) for 2r +12 <i < 4r +11 we use induction.

Basis step: For i =2r +12, we see that

1 2 2. N-1,2
Qe (2r412) = Qars(2r:8)Bpre(araay > (XTY) X7 =Y.
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Inductive step: Suppose that ag,,; > Y (for some 2r +12 <i <4r+10). Then using Lemma 1.2 (a) above

and the induction hypothesis we see that
a
as required.

Sreitl

-1 2 -1,,2
a r+i—3a8r+i = y y = yv

It is now clear from Lemmas 2.5, 2.6, 2.7 and 2.8 that the mapping defined in (3) is indeed a morphism onto
D, , which preserves all the relations of F(4r +3, 8r +8) and so Theorem 2.4 is proved.

Finally we consider the Fibonacci groups F(4r +5, 8r +12) .

Theorem 2.9 Let r>0. There exist morphisms from F(4r+5,8r+12)ontoD, for all n>3. Hence

F(4r +5, 8r +12) is infinite.

As in the previous cases, we are going to prove this theorem via a sequence of lemmas. However, since the
proofs are similar to the previous case we are going to state the corresponding results without proofs. We first define a

mapping from the first 4r +5generators of F (4r +5, 8r +12) onto the generators of D, by

a,a, ;—>Xand g Y, %)

where 2 <1 <4r+5,1#2r+3and r > 0. Analogously to Lemma 2.5 we have

Lemma 2.10 Forr >0

(@) a5 6 Y;

() a,.,, = X"

(©) Byrp > XY,

d a,. —Yy(@O<i<2r+8).

Ar+i

Analogously to Lemma 2.6 we have
Lemma2.11 Forr >0 we have.
(a) a'6r+9 = anl;
(b) Agrg0 > X7V
(©) ag,; Y (@1l<i<2r+12).

Analogously to Lemma 2.7 we have

Lemma 2.12 For r >0 we have
(@) & =8g43 > X;
(b) & ,, =84, Y @4<i<2r+14).

Analogously to Lemma 2.8 we have

Lemma 2.13 For r >0 we have

(@) 85,3 = gy (2ri15 > X

(b) a4, =385, > Y @r+16<i<4r+17).

It is now clear from Lemmas 2.10, 2.11, 2.12 and 2.13 that the mapping defined in (4) is indeed a morphism onto
D, , which preserves all the relations of F(4r +5,8r +12) and so Theorem 2.9 is proved.
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