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ABSTRACT: Velocity profiles of Newtonian immiscible liquids undergoing laminar flow between 

two horizontal plates under pressure gradient are investigated using a momentum balance equation. 

The differential equation describing the flow has been solved and equations for the velocity profiles of 

a two-layer and three-layer liquid systems are presented. As examples, we show flow patterns of two-

layer water-crude oil system and three-layer system involving water, tetrachloromethane, xylene, 

cyclopentane and hexane. A distinctive pattern is noticeable between the velocity profiles of heavy 

(API 19.19) and light (API 40.89) Omani crude oils. 
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 شكال انسرعة نتدفق اننفط انعماني انخاو وانسوائم الأخرىأ

 سيد انعارفين و مجيب انرحمن

جّثيً اٌسشعة ٌٍسىائً إٌيىجىٔية غيش اٌمابٍة ٌٍزوباْ رات الأذفاق اٌصفحي بيٓ سطحيٓ أفمييٓ جحث جغيشّ في  اٌبحثيسحجٍى  مهخص :

سطحيٓ أو ِعادلات اٌسشعة بيٓ وزٌه اٌّعادلات اٌحفاضٍية اٌحي جصف اٌحذفك وجُ حً ححشن. اٌسحخذاَ ِعادٌة جىاصْ وّية إاٌضغظ ب

. وّثاي عٍى رٌه، حشوة اٌّاء وإٌفظ اٌخاَ بيٓ سطحيٓ أو ثلاثة باسحخذاَ اٌّاء و جيحشاوٍىسوِيثيٓ و صايٍيٓ و ثلاثة أسطح

 AP1و  API 19.19 ٌٍٕفظ اٌعّأي اٌخاَ اٌخفيف واٌثميً )اٌشىً اٌّحّيض بيٓ اٌسشعات   يُّىٓ أْ يلاحظ سايىٍىبيٕحيٓ واٌهيىسيٓ.
40.89.) 

 

 شىً جغيش اٌسشعة. و ِحعذد اٌطبمات، سىائً غيش لابٍة ٌلاخحلاطجذفك : مفتاح انكهمات

 

1. Introduction 

ulti-layer fluid flows span a wide field covering a multitude of various technological perspectives and a broad 

range of engineering disciplines. Engineering applications of multi-layer flows of immiscible liquids are found 
in multi-layer extrusion of plastic films, multi-layer coating, lubricated squeezing flows and in the transportation of 

liquid hydrocarbon [1]. In the two-layer case, like an oil-water system, accurate prediction of flow characteristics, such 

as flow pattern, water holdup and pressure gradient is important in many engineering applications including petroleum 

engineering [2]. However, despite their importance, liquid-liquid flows have not been explored to the same extent as 

gas-liquid flows. In fact, gas-liquid systems represent a very particular extreme of two-fluid systems characterized by 

low-density and low viscosity ratios. In liquid-liquid systems the density difference between the phases is relatively 

low while the viscosity ratio encountered in liquid-liquid systems extends over a range of many orders of magnitude. 

The occurrence of annular flow in liquid-liquid systems is therefore more frequently encountered in oil-water systems 

of low density differential, and small diameter tubes. Recently Kumara et al. [3] used particle image velocimetry (PIV) 

technique to characterize the flow structure of oil-water flow in horizontal and slightly inclined pipes. They observed 

stratified flow with some mixing at the interface at mixture velocity of 0.50 m/s for all pipe inclinations. 
In addition to these applications in chemical and petroleum engineering, the flow of multi-layered   immiscible 

fluids is also important in the study of the evolution of magma within the Earth. It has been suggested [4] that non-ideal 

mixing of silicate melts is the cause of liquid immiscibility in simple and naturally occurring systems. Peridotite melts, 

constituent rock melts of the upper mantle of the Earth, become immiscible as temperatures are raised above their 

liquidus. Moreover, the kinematic and dynamic behavior of lava flows may dramatically change with lava temperature 

variations because of the strong temperature-dependence on viscosity [5,6]. Flow during ascent and emplacement of 

magmas undergoing liquid immiscibility may have important consequences in magma rheology and differentiation. For 
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example, strong elongation of liquid-liquid structures may have produced the fine lamination in domes of the Piedra 

Parada caldera in Argentina [7]. It has been observed [8] in the study of multi-component geologically relevant systems 

that three-fluid immiscibility in the form of coexistence of an aluminosilicate melt with two hydrous fluids is common 

in natural magmatic systems.  

The Earth’s outer core is 10% less dense than the pure metallic Fe-Ni liquid [9]. This led geophysicists and 
geochemists to assume that the outer core may have light elements like sulfur, carbon, oxygen, hydrogen and silicon to 

account for the 10% density reduction. The same argument is also directed to the study of the interior of other planets 

like Mars and Mercury. Dasgupta et al. [10] investigated the near liquidus phase relations in the Fe-C-S ternary system 

and concluded that liquid immiscibility could induce stratification of planetary cores that are entirely molten or at least  

have a molten outer core at pressures less than 6 GPa. Such immiscibility is not expected at the molten outer core of 

the planets like the Earth, Venus and Mercury where the relevant core pressures are much higher than 6 GPa. This 

observation contradicts an earlier prediction [11] that there exists immiscible layers of 12 km thickness at the outer 

liquid core of the Earth. The presence of a thin layer at the top of the outermost core is of considerable importance for 

the geodynamic and geomagnetic behavior of the Earth; however, detecting the presence of such a thin layer is difficult 

[12].  

Analytical solutions for two-layer flow have been obtained by several authors [13,14]. However, analytical 

expressions for more than two-layers are not available in the literature because of the 'tedious algebra' involved in 
deriving the equations for the velocity. Owing to this difficulty it has been suggested [15] that the differential equations 

can best be solved by standard numerical techniques. In the present study we present exact solutions of the momentum 

balance equations involving velocity profiles for a three-layer liquid system having different viscosities and densities; 

this is one-step forward in understanding immiscible multi-layer fluid dynamics. We are, however, presently working 

towards finding a generalized solution for an n-layer liquid system, which will consider instability of the liquid 

interfaces.  

The layout of the paper is as follows: in section 2, we describe the mathematical formalism of the momentum 

balance equation and set up the equations for velocity profiles in terms of the unknown constants of integration for an 

n-layer liquid system. In section 3, we present the solutions of the relevant differential equations for two- and three-

layer immiscible liquid systems. Some examples of velocity profiles for two-layer systems involving water and Omani 

crude oils, and three-layer systems involving water and some chemicals are given in section 4 which is  followed by 
conclusions in section 5. 

2. Formalism 

The formalism is based on solving differential equations describing momentum balance and Newton's equation 

for viscosity for an n-layer liquid system as shown in Figure 1. It is assumed that the density of the liquids decreases 

progressively upwards with the bottom most layer being the most dense and the top the least dense. For steady state 

flow, the well-known momentum balance equation is [16] 
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where p is the momentum and its time derivatives are the rate of change of momentum entering into and leaving the 

system respectively. The F’s are the pressure forces acting on the surface and gravity forces acting on the volume as a 

whole. We assume that (i) the liquid-liquid interface is a plane of constant x coordinate and (ii) tangential components 

of velocity vy, vz and of stress-tensor τxx, τxy, and τxz are continuous throughout an interface (i.e. there is no slip across 

an interface). The above boundary conditions imply that no material is diffusing through the interface. In other words 

there is no absorption, adsorption, dissolution, evaporation, melting or chemical reaction at the interface. 
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Figure 1. A Schematic diagram for a multi-layer liquid system with varying viscosities and densities. 
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The density of the layers is assumed to increase progressively downwards with the bottom most layer being the most 

dense and the top the least dense. 

When two or more immiscible fluids undergoing laminar flow are present in a horizontal thin slit of length L and 

width W under the influence of a pressure gradient, the velocity distribution can be obtained by solving two governing 
equations. One of these equations is the momentum balance equation given by: 

                                                                                          (
    

  
)  

  

 
                                                                                 ( )    

and the other one is the Newton’s law of viscosity which is given by: 

                                                                                                  
   

  
                                                                              ( )   

Here τxz is the viscous momentum flux component or simply the viscous stress component. τxz refers to the stress acting 

in the z direction on the face of a parallelepiped which is perpendicular to the x axis.   ΔP/L is the pressure gradient, 

where ΔP is the pressure difference over a length L of the fluid surface, μ is the viscosity, and    is the velocity. 

Integration of (2) yields 

                                                                   (
  

 
)                                                                             ( )                 

where C is a constant of integration. Using the assumption of continuous     throughout any of the interfaces, it can be 

shown that C is the same for all the interfaces within a given number of immiscible liquids. C changes if the number of 
given liquids changes and henceforth it will be denoted by nC. The index n is the number of liquids present in a system 

and its minimum value is 2, indicating the minimum number of layers required to constitute a liquid system in this 

study. Substituting (3) in (4) and integrating, one can write the equation for velocity for an n-layer liquid system as: 
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where μi and nviz are respectively the viscosity and velocity of liquid in the ith layer of an n-layer liquid system. The 

running index i takes on values 1, 2, 3, ....., n. The (n+1) constants of integration, nC and ndi, are to be determined by 
applying the following three boundary conditions in (5) 

(i) at x = -x1, i.e. at the bottom solid surface, nv1z = 0 

(ii) at x = 0, i.e. at the interface between  layer 1 and layer 2 (see figure 1), nv1z = nv2z  and   

(iii) at x = xk, i.e. for all interfaces between the 2nd layer and the (n-1)th layer,  nvkz = nv(k+1)z where k = 2, 3, 4, 

...., n-1  and at x = xn, i.e. at the top solid surface, nvnz = 0           

and solving the resulting (n+1) equations. Applying boundary condition (i) in Eq. (5) one gets 
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The boundary condition (ii) at x = 0  gives:  
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while the boundary condition (iii) at x = xk  (i.e. the interface between kth and (k+1)th layers) gives 
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Likewise the boundary condition (iii) at x = xn,   
nvz = 0 yields                      

                                                                        ( 
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                                                                  ( ) 

The task is now to solve Eqs. (6), (7), (8) and (9) to determine the (n+1) constants of integration such as C  arising out 

of Eq. (4) and the ndi (i = 1, 2, 3, ... , n) arising out of Eq. (5). We will restrict our investigations in this study to two- 
and three- layer liquid systems only. Our investigation for a generalized solution for an n-layer system is in progress. 

3. Solutions of the momentum balance equations  

We present here solutions of the momentum balance equations involving two- and three- layer liquid systems 

only. The constants (i.e. the C’s in Eq. 4 and the d’s in Eq. 5) of integration are first determined by solving Eqs. (6), 

(7), (8) and (9) and then substituting back in Eq. (5) to find the velocities within each layer. These velocities follow a 

pattern that can be represented by a mathematical series. We represent the velocity by nvi after dropping the subscript z. 

It is understood that all velocities considered in the present study are directed along the z-axis (see Figure 1). The 

superscript, n indicates the total number of layers in a system and its minimum value is 2. The subscript, i (i =1, 2, 3, 

..., n) represents an arbitrary layer for which the d's and v's are needed. 
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3.1     A two-layer liquid system 

For a two-layer liquid system n = 2. We will consider two simultaneous equations, Eqs. 6 and 8 to find the 

constant 2  and either 2  or 2   (because 2  = 2  ). We present the constants and the velocities in terms of the 
thicknesses (Figure 1) of the layers so that 
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The superscript 2 represents the total number of layers in the liquid-liquid system and the subscripts represent an 

arbitrary layer within the system. We define numerator, Num and denominator, Deno for the 2-layer system as 
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so that the constant related to the viscous stress component can be denoted by 2C by the equation   
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3.2     A three-layer liquid system 

In the case of a three-layer system, n = 3. The numerator, Num and denominator, Deno for three layers are   
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The constants of integrations for a three-layer system are given by: 
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It may be recalled that the constant of integration, C arising out of momentum balance equation (Eq. 2) is the same for 

all interfaces of an n-layer system because viscous stress component,     is assumed to be continuous throughout the 

interfaces.

he velocities for the three-layer system are given by 
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where   
      is the additional velocity term added to the velocity in the second layer of the 3-layer liquid system. It is 

given by:  

                                                            
  

   *  (         )     (     )  +

  
     

                                                   (   ) 

The velocity in the third layer is given by: 
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+                                                                 (11i) 

The superscript 3 indicates the number of liquids in the system and the subscripts 1, 2 and 3 represent the individual 
layers in which the velocities are to be found.    

4. Results and discussions 

We have used MATLAB to calculate the velocity profiles for two- and three-layer immiscible liquid systems. In 

all these cases we have assumed that the density of the liquids decrease upwards so that the most dense liquid is in the 

bottom most layer and the least dense liquid is in the top most layer. Our entire analysis is based on stratified flow 

regime. We have used water, Omani crude oils (Erad and Zal-41) and a number of chemicals such as 

tetrachloromethane, xylene, dichloromethane, cyclopentane and hexane to perform the model calculations of the 

velocity profiles in the liquids.  The viscosities and densities of these liquids are given in Table 1. The net pressure, ΔP 

between the ends of the horizontal plates is taken to be 5 Pa for all the cases. 
 

Table 1. Densities and viscosities of liquids used in computing the velocity profiles for two- and three-layer systems. 

Properties 
 

 

Liquids     

 
Density 

(g•cm-3) 

 
Viscosity 

(mPa•s) 

Tetrachloromethane 1.595 1.460 

Water 1.000 1.002 

Erad crude 0.933 580 

Xylene 0.880 0.812 

Zal-41 0.818 9.900 

Cyclopentane 0.751 0.440 

Hexane 0.655 0.294 

4.1    Omani crude oils  

We have chosen two representative samples of Omani crude oils to study the flow dynamics in water-crude oil 
system.  Erad is described as a heavy crude oil (API 19.19) and has the largest viscosity (0.58 Pa s) while Zal – 41 is 

described as a light crude oil (API 40.89) with the smallest (0.0093 Pa s)  among the samples we have investigated 

[17,18]. The results for the simplest two-layer system consisting of water and Omani crude oils are shown in Figures. 

2a, 2b, 2c and 2d for various crude oil and water thicknesses treated within stratified flow approximation.  In the case 

of the Erad-water system, the water thickness is kept at 1.0 mm (Figures 2a and 2b) while the oil thickness is doubled 

(Figure 2b). By doubling the oil thickness in Figure 2b, the maximum velocity of the water layer has increased by 

about 29% but the velocity at the interface has increased by about 233%. The net pressure ∆p is kept at 5 Pa in both the 

cases. Figures 2c and 2d show the velocity distributions for Zal-41 crude oil and water system. It may be noted that the 

Zal – 41 sample has a very low viscosity (0.0093 Pa s) in comparison with that of the Erad sample (0.58 Pa s). In this 

case the oil thickness was kept constant at 5 mm while the water thickness is different, 1 mm in Figure 2c and 3 mm in 

Figure 2d. An increase of water thickness by 300% has increased the maximum velocity by a factor of 10 for the same 
net pressure of 5 Pa. 

 
Figure 2a. Velocity profile of Erad (heaviest) crude oil-water system with an oil thickness 5 mm. 
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Figure 2b. Velocity profile of Erad (heaviest) crude oil-water system with an oil thickness 10 mm. 

 
 

Figure 2c. Velocity profile of Zal-41 (lightest) crude oil-water system with a water thickness of 1mm and an oil thickness 5 mm. 

 
 
Figure 2d. Velocity profile of Zal-4a (lightest) crude oil-water system with a water thickness of 3 mm and an oil thickness of 5 mm. 

4.2     Other liquids 

The effects of the viscosity of the top layer in a 3-layer system consisting of the liquids tetrachloromethane, 

water, xylene, cyclopentane and hexane are shown in Figures 3 (a-c). Thicknesses of the layers and the pressure 

difference are kept same in all these three cases. 
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Figure 3a. Velocity profile of tetrachloromethane-water-xylene system. 
 

 
 

Figure 3b. Velocity profile of a tetrachloromethane-water-cyclopentane system. 
 

 
 

Figure 3c. Velocity profile of a tetrachloromethane-water-hexane system. 
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5. Conclusions 

The differential equations involving multi-layer flow of liquids under ideal conditions of Newtonian liquids 

satisfying laminar and stratified flow have been set up for an n-layer liquid system and solutions for the velocity 
profiles of two- and three-layer systems are presented. These solutions are exact analytical expressions for the velocity 

profiles within the liquids. As examples, flow patterns of two-layer water-Omani crude oil systems and three-layer 

systems involving tetrachloromethane, xylene,  cyclopentane and hexane have been determined. The flow pattern for 

the heaviest Erad crude oil is distinctively different from that of the lightest Zal-41 crude oil.  

The viscosity data used in the calculation of the velocity profile are presented in Table 1. For almost all of the 

model fluids the viscosity is lower than that of water at room temperature being the viscosity of the first layer i.e. 

tetrachloromethane (1.460 mPa s). 

It is relevant to mention here that in any real multi-layer system, the presence of absorption, adsorption 

dissolution, evaporation, melting or chemical reactions will complicate the situation. Most of these processes are 

directly related to wetting and friction phenomena complicating the flow dynamics. In some circumstances interfacial 

instability occurs causing turbulence in the flow process. This real picture will certainly require modification of our 
approximations and in our future endeavor we will address the above issues, incorporating an extensive momentum 

balance equation along with exact solutions for n-layer liquid system. 
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