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FCC, BCC and SC Lattices Derived from the 
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ABSTRACT: We construct the fcc (face centered cubic), bcc (body centered cubic) and sc (simple 

cubic) lattices as the root and the weight lattices of the affine extended Coxeter groups 

3 3 3( ) and W( ) ( )W A B Aut A . It is naturally expected that these rank-3 Coxeter-Weyl groups define 

the point tetrahedral symmetry and the octahedral symmetry of the cubic lattices which have extensive 

applications in materials science. The imaginary quaternionic units are used to represent the root 

systems of the rank-3 Coxeter-Dynkin diagrams which correspond to the generating vectors of the 

lattices of interest. The group elements are written explicitly in terms of pairs of quaternions which 

constitute the binary octahedral group. The constructions of the vertices of the Wigner-Seitz cells have 

been presented in terms of quaternionic imaginary units. This is a new approach which may link the 

lattice dynamics with quaternion physics. Orthogonal projections of the lattices onto the Coxeter plane 

represent the square and honeycomb lattices.  
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 ( المشحقة مهFCC( والمكعب مركزي الىجه )BCC( والمكعب مركزي الجسم )SCشبكات المكعب البسيط )

 لكىاجيرويىنويل وا -مجمىعات كىسيحر     

 وظيفة كىجا، مهمث كىجا و مىى الصىافية

 

يٍ انشبكت   (FCC( وانًكعب يشكضي انىخه )BCC( وانًكعب يشكضي اندسى )SC: نقذ حى بُاء شبكاث انًكعب انبسٍط ) ملخص

  (affine extended Coxeterانًًخذة )انًخشابطت والأساسٍت وانشبكت انخثاقهٍت نًدًىعاث كىسٍخش 

( راث انًشحبت انثانثت حًخهك حُاظش )حًاثم( سباعً Coxeter-Weylوٌم ) -.إٌ يدًىعاث كىسٍخش  و

( quaternionsوثًاًَ نشبكت انًكعب وانخً نذٌها حطبٍقاث واسعت فً يدال عهى انًىاد. إٌ وحذاث انعذد انًشكب انخخٍهً كىاحٍشٍَىٌ )

انًشحبت انثانثت لإٌداد يخدهاث انشبكت. عُاصش  و( رCoxeter-Dynkinدٌُكٍ )-و الأساسً نًخططاث كىسٍخشُظااناسخخذيج نخًثم 

صٌخض -انًدًىعت كخبج بذلانت أصواج يٍ كىاحٍشٍَىٌ حشكم انًدًىعت انثًاٍَت انثُائٍت. كًا حى حًثٍم سؤوط )قًى( خلاٌا وٌدُش

(Wigner-Seitzٍبذلانت وحذاث انعذد انًشكب انخخ )( ٌهً كىاحٍشٍَىquaternions وهزا انُهح اندذٌذ قذ ٌشبط بٍٍ دٌُايٍكٍت انشبكت .)

 ( ًٌثم شبكت انًشبع وانشبكت انسذاسٍت )خهٍت انُحم(.Coxeterيع فٍضٌاء انكىاحٍشٍَىٌ. الإسقاط انعًىدي نهشبكت عهى سطح كىسٍخش )

 

 انًشكبت. يدًىعاث كىكسخش، انشبٍكت انفشاغٍت و انشباعٍاث مفحاح الكلمات:
1. Introduction 

he Lie groups based on the Coxeter-Weyl groups [1] have had a great impact in high energy physics, describing 
its Standard Model [2-4] and its extension to the Grand Unified theories [5-7]. The Coxeter-Weyl groups acting as 

discrete groups in the 3D Euclidean space generate certain orbits [8-9] which describe the molecular structures [10] 

and viral symmetries [11-12]. Higher dimensional lattices described by the affine extension of the Coxeter-Weyl 

groups can be used to describe the quasicrystal structures when projected into lower dimensions [13-16]. The rank-3 

Coxeter-Weyl groups 3 3 3( ) and W( ) ( )W A B Aut A define the point tetrahedral and octahedral symmetries of the 

cubic lattices which have an enormous number of applications in materials science. In this paper we explicitly show 

that the root lattice and the weight lattice of the affine Coxeter group 3( ) aW A describe the fcc and bcc lattices 

respectively. We point out that there is a natural correspondence between the octahedral symmetry of the fcc and bcc 

lattices and the binary octahedral group of quaternions. The paper is organized as follows.  

T 
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In Section 2 we explore how the honeycomb lattice and the square lattice in two dimensions are respectively 

described by the affine extensions of the Coxeter-Weyl groups 
2 2

( ) and ( )W A W B  respectively. Section 3 is devoted to 

the construction of the Coxeter-Weyl group 
3

( ) W A and its extension 
3

( )Aut A by Dynkin diagram symmetry in terms of 

quaternions. We explicitly display  how those polyhedra possessing tetrahedral symmetry can be constructed as the 

orbits of the group 
3

( ) W A and prove that the root lattice and the weight lattice describe the fcc and the bcc lattices 

respectively. In Section 4 we point out that the regular polyhedra can be obtained as the orbits of the Coxeter-Weyl 

group 
3( )W B and furthermore we demonstrate that its affine extension 

3( )aW B  describes the sc and the bcc lattices as 

the root and the weight lattices of 
3B expressed in terms of quaternions. In Section 5 we study the orthogonal 

projections of 
3 3 and A B lattices onto the Coxeter plane, displaying respectively the square and hexagonal lattices and 

emphasize the importance of the dihedral subgroups of the Coxeter-Weyl groups in projection techniques. Some 

conclusive remarks will be presented in Section 6 regarding the applications of the quaternionic constructions of the 
3D lattices. 

2. Construction of the honeycomb and square lattices as the affine Coxeter-Weyl groups Wa (A2) and 

Wa (B2)   

The Coxeter-Weyl groups are generated by reflections with respect to some hyperplanes represented by vectors 

(also called roots in the literature of Lie algebras). If 
1 2, ,..., nr r r represent the reflection generators, then the 

presentation of the Coxeter-Weyl group ( ) W G is given by 

                                                                     
1 2( ) , ,..., ( ) 1ijm

n i jW G r r r r r                                                            (1) 

where 
ij

m  is an integer label with 1,  2,3, 4
ii ij

m m  and 6 for i j representing respectively no line, one line, two lines 

(or label 4) and three lines (or label 6) between the nodes of the Coxeter-Dynkin diagrams which determine the 

crystallographic groups. In case ijm takes other positive integer values they correspond to non-crystallographic 

Coxeter groups which are out of the scope of this work. The Coxeter-Dynkin diagrams representing the groups 

2 2( ) and ( )W A W B that we will study in this section are given in Figure 1. 

                                                     
                                               (a) (b) 

Figure 1. The Coxeter-Dynkin diagrams (a) for 2 2 and (b) for A B . 

 

The vectors 1 2 and   (hereafter called „roots‟) orthogonal to the planes with respect to which the reflection generators 

reflect an arbitrary vector  as                      

                                                     
2( , )

,  1,2.
( , )

i

i i

i i

r i



 


                                                               (2) 

The Cartan matrix C with the matrix elements 
2( , )

( , )

i j

ij

j j

C
 

 
 and the metric G defined by matrix elements 

1
( , )

( )
2

j j

ij ijG C
 

  are important for the description of the Coxeter-Weyl groups and the corresponding lattices. 

The Cartan matrix and the matrix G represent the Gram matrices of the direct lattice and the reciprocal lattice 

respectively [17]. We take the roots  i as the generating vectors of the direct lattice. The weights i spanning the 

dual space and satisfying the scalar product  

2
( , ) and ( , ) with 

( , )

j

i j ij i j ij j

j j

G


     
 

   correspond to the generating vectors of the reciprocal lattice. Now 

we discuss the lattices associated with each Coxeter-Weyl group.  

2.1 The lattice determined by the affine group Wa(A2)  

The Cartan matrix C and the metric G are given as follows 

 

                                                      
2 1 2 11

,   
1 2 1 23

C G
   

    
   

.                                                                (3) 
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The plot of the polygons (triangle or hexagon) described by the orbits of the group 
2( )W A will be given in 

orthonormal basis which can be obtained by using the eigenvectors of the Cartan matrix [18]  

                                             
1 1 2 2 1 2

1 1
ˆ ˆ( ),  ( )

2 6
x x                                                               (4) 

and in the orthonormal basis the roots read as  

                                                 
1 2

1 3 1 3
( , ), ( , )

2 22 2
    .                                                              (5) 

The group generators act on the roots as: 

1 1 1 1 2 2 1 2 1 1 2 2 2 2, , ,r r r r                  which generate the group 
2( )W A  of order 6, which is isomorphic 

to the dihedral group
3D . Including the Dynkin diagram symmetry which implies 

1 2:   , the generators generate 

a group of order 12, which is isomorphic to the dihedral group
6D . The matrix representations of the generators in the 

root space can be written as  

1 2

1 0 1 1 0 1
, ,

1 1 0 1 1 0
r r 


  



     
     
     

.                                                              (6) 

 

The affine Coxeter group 
2( )aW A  includes another generator 

0r which reflects the vectors with respect to a plane 

bisecting the vector 
1 2  . This corresponds to a translation on an arbitrary vector  , as 

1 2( )   . The 

repeated applications of the generators will generate the root lattice 
2A , where an arbitrary lattice vector is given by 

1 1 2 2 ,   p b b   with 
1 2,  b b  (the set of integers). The root system consisting of the vectors 

1 2 1 2, , ( )        

determines the primitive cell of the direct lattice which is an hexagon. The whole lattice is the infinite set of hexagons 

as shown in Figure 2. It is interesting that the honeycomb lattice does in fact exist as graphene made of carbon atoms 

[19].  

 

 
 

Figure 2. The honeycomb lattice. 
 

The weight vectors can be determined from the relation 
2

1

i ij j

j

G 


 where the reciprocal lattice 
2A  (weight lattice) 

vectors are given by 1 1 2 2 1 2( , )  q a a a a    with 1 2,  a a  . We will define an orbit in the dual space (reciprocal 

space) as 
22 1 2 1 2( )( , ) ( , )AW A a a a a which represents an isogonal hexagon with two edge lengths in general. When we 

have 1 2a a , the orbit is a regular hexagon
2

(1,1)A determined by the root system which is invariant under the 

group 2 2 2( ) ( ) :Aut A W A C  generated by the matrices in (6). The orbits 
2 21 2( ,0) and (0, )  A Aa a represent triangles. The 

union of the orbits 
2 2

(1,0) (0,1)A A , each representing an equilateral triangle,  constitutes another hexagon dual to the 

hexagon
2

(1,1)A and describes the primitive cell of the weight lattice. Since both the root lattice and the weight lattice 

are made of hexagons they can be transformed to each other by a change of scale and the lattice point symmetry. Note 

that the hexagon described by two triangles is invariant under the group 2( )Aut A  which involves the Dynkin diagram 

symmetry.  

We assume that the reader is familiar with the concept of nearest neighbor region which is called the Wigner-
Seitz cell or Brillouin zone by the crystallographers, but is also known as the Voronoi cell or Drichlet region by  

mathematicians. The Wigner-Seitz cell of the root lattice 2A  is the cell 
2 2

(1,0) (0,1)A A which can be determined from 

its primitive cell (see Figure 3). The Wigner-Seitz cell
2 2

(1,0) (0,1)A A is a scaled copy of the dual of the primitive 

cell
2

(1,1)A after a 030 rotation. It is obvious that the primitive cell of the weight lattice is the hexagon
2 2

(1,0) (0,1)A A . 
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It can be shown that the Wigner-Seitz cell of the weight lattice is the orbit 
2

1
(1,1)

3
A

, which is a scaled copy of the root 

polyhedron (hexagon in this case) by the Coxeter number 3 of the group 
2( )W A . We will see that this is a general 

property of the 
nA series of the Coxeter-Weyl groups. 

 
Figure 3. The Wigner-Seitz cell 

2 2

(1,0) (0,1)
A A
 inscribed in the primitive cell of the root lattice. 

 

2.2 The lattice determined by the affine group Wa (B2)   

The roots of 
2B consist of long and short roots; in a particular orthonormal system with ( , )i j ijl l  , the 

simple roots can be written as
1 1 2 2 2,l l l    . The Cartan matrix, its inverse and the  matrix G are given by 

1

1
1 1 1

2 2 2
, ,1

1 2 1 11
2

2 2

C C G

 
                 

  
 

.                                                           (7) 

The group generators 
1 2 and r r act in the root space as  

                              1 1 1 1 2 1 2 2 1 1 2 2 2 2, , 2 ,r r r r                                                            (8) 

which can be represented by the matrices 

                                                      1 2

1 0 1 2
,  

1 1 0 1
r r

   
    

   
.                                                                    (9) 

 

They generate the dihedral group 4D of order 8, which is the symmetry of the square. The root system consists of two 

orbits 2 1 2 1 1 2{ ,  ( + )} and { ,  ( +2 )}          which can also be written in the orthonormal basis as 

1 2 1 2{ ,  } and { }l l l l    , corresponding to the centers of the edges and the vertices of a square respectively. It is clear 

that the root lattice is generated by the short roots of 2B .The primitive cell is the square represented by the 

vectors 1 2{ ,  }l l  . The translation generator is obtained as the addition of the highest short root 1 2 1+ l   to any 

vector. Therefore the root lattice is represented either by the vectors 1 1 2 2 1 2+ ;   ,b b b b   or, equivalently, 

by 1 2 2 1 2+ ;   ,  lm l m l m m  . Then the Wigner–Seitz cell is a square with the vertices 
2 1 2

1 1
(0,1) { }

2 2
B l l    as shown 

in Figure 4. 

 

Figure 4. The square lattice as the root lattice of 2B . 

 

The weight lattice is represented by the vectors 1 1 2 2 1 2+a ,    ,  a a a   . Then the lattice vectors in the orthonormal 

basis will be 1 2 2 1 2+ ;   2 ,  2lm l m l m m  so that it involves the union of the sets with 1 2    and m m are either both 
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integers or both half integers. This indicates also that the root lattice is a sublattice of the weight lattice. Since the 

weight lattice and the root lattice are equivalent to each other up to a scale transformation and a rotation by 045 ,  it 

suffices to talk about the root lattice only. 

 

3. Construction of the fcc and the bcc lattices as the affine Coxeter-Weyl group Wa (A3)  
 

A brief introduction is necessary for those readers not familiar with the quaternions. The quaternions are the 

extension of the complex number system discovered by Hamilton in 1853 [20] with three imaginary units , ,i j k  

satisfying the well-known relations 
2 2 2 1,   1i j k ijk      . 

In what follows we will use a different notation for the quaternionic units
1 2 3, ,i e j e k e   . Let

0 i i
q q q e  , 

( 1,2,3)i   be a real unit quaternion with its conjugate defined by 
0 i iq q q e  and its norm 1qq qq  . 

The quaternionic imaginary units now satisfy the relations 

                                                    
i j ij ijk ke e e    , )3,2,1,,( kji                                                              (10) 

where ij and ijk are the Kronecker and Levi-Civita symbols, and summation over the repeated indices is understood. 

The unit quaternions form a group isomorphic to the special unitary group (2)SU . With the definition of the scalar 

product   

    
1 1

( , ) ( ) ( )
2 2

p q pq qp pq qp                                                           (11) 

quaternions generate the four-dimensional Euclidean space and the unit quaternions 
1 2 31,  ,   and e e e form an 

orthonormal basis. From now on it is understood that a quaternion is a 4D-Euclidean vector. The Coxeter-Dynkin 

diagram of 
3A with the quaternionic simple roots is given in Figure 5. 

21 ee                23 ee               12 ee 
 

Figure 5. The Coxeter diagram 
3A  with quaternionic simple roots. 

An arbitrary quaternion   when reflected by the operator r with respect to the hyperplane orthogonal to quaternion 

 is given in terms of quaternion multiplication [21]  as                      

                                                [ , ]
2 2 2 2

r
           .                                                       (12) 

 

The bracket on the right of the equation (12) is self explanatory and should not be confused with the commutator 

notation. The Cartan matrix of the Coxeter-Dynkin diagram 3A  and its inverse matrix are given respectively by the 

matrices 

                           

2 1 0

1 2 1

0 1 2

C

 
 

  
 
  

,  1

3 2 1
1

2 4 2
4

1 2 3

C 

 
 


 
  

.                                                 (13) 

The generators of the Coxeter group 3( )W A are then given in the notation of (12) by  

1 1 2 1 2

1 1
[ ( ), ( )]

2 2
r e e e e     , 

2 3 2 3 2 3 2 1 2 1

1 1 1 1
[ ( ), ( )] , [ ( ), ( )] .

2 2 2 2
r e e e e r e e e e                                        (14) 

                                                        

The reflection generators operate on the quaternionic imaginary units as follows:                  

 

1 1 2 3 3 2 1 1 2 3 3 1 2 3 3: ,  ;   : ,  ;  : ,  .r e e e e r e e e e r e e e e       

 

They generate the Coxeter group 3( )W A  of order 24 isomorphic to the tetrahedral group, the elements of which can be 

written compactly by the set 

                    

3( ) {[ , ] [ , ] }W A p p t t   , ,  p T t T   .                                                (15)                                            
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Here  and  T T  are the sets of quaternions  

 {T 1 2 3 1 2 3

1
1,  ,  ,  ,  ( 1 )}

2
e e e e e e        ,    

1 1 1 1 1 1

1 2 3 2 3 1 3 1 22 2 2 2 2 2
{ ( 1 ), ( ), ( 1 ), ( ), ( 1 ), ( )}e e e e e e e e eT                                                     (16) 

where T represents the binary tetrahedral group of order 24,  and the union of the set O T T   represents the binary 

octahedral group [22]  of order 48 . When the simple roots are chosen 
1 1 2 2 3 2 3 2 1, ,e e e e e e        as in the 

Figure 5 then the weight vectors are determined from (13) as  

1 1 2 3 2 3 3 1 2 3

1 1
(1, 0, 0) ( ),    (0,1, 0) ,    (0, 0,1) ( )

2 2
e e e e e e e             .           (17) 

The orbits generated by these vectors would lead to the set of vectors  

3

3

3

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

1 1 1 1
(1,0,0) { ( ), ( ), ( ), ( )},   

2 2 2 2

(0,1,0) { ,  ,  },  

1 1 1 1
(0,0,1) { ( ), ( ), ( ), ( )}.

2 2 2 2

A

A

A

e e e e e e e e e e e e

e e e

e e e e e e e e e e e e

          

   

          

                          (18) 

 

They respectively represent the vertices of a tetrahedron, an octahedron and another tetrahedron. The orbits 

3 3
(1,0,0)  and  (0,0,1)A A together represent the vertices of a cube. Therefore the symmetry of the union of the orbits 

3 3
(1,0,0)  (0,0,1)A A requires the Dynkin diagram symmetry 

1 1[ , ]e e    which extends the Coxeter group 
3( )W A to 

the octahedral group 
3 3 2( ) ( ) :Aut A W A C  whose quaternionic representation is given by  

 

 
3

( ) {[ , ] [ , ] [ , ] [ , ]}Aut A T T T T T T T T
        .                                                    (19) 

 

Note that from now on we are using the group notation instead of (15), but with the same meaning.  It can be proved 

that the Coxeter-Weyl group 
3( )W A given by (15) is isomorphic to tetrahedral group

3 4( ) dW A T S   where the 

notation dT  is used by crystallographers and 4S  represents the symmetric group of four objects which permutes the 

vertices of a tetrahedron. To understand this better, let us denote the vertices of the tetrahedron by letters;  

1 2 3 1 2 3 1 2 3 1 2 3

1 1 1 1
( ), ( ), ( ), ( ). 

2 2 2 2
A e e e B e e e C e e e D e e e               

 
It is clear now that the reflection generators can be written in the permutation notations  

   

1 2 3
, ,

A B C D A B C D A B C D
r r r

C B A D A B D C A D C B
  
     
     
     

.                          (20) 

 

In this notation they represent the generators of the group 4S , permuting the four letters. To see a few examples, note 

that 1 2r r fixes B but permutes ACD. Similarly 2 3r r  leaves A invariant but permutes BDC. The Coxeter element 

1 2 3r r r permutes all four letters in the order ACDB. The group 3( )Aut A has three maximal subgroups, each is of order 

24.  

a) The usual one is the 3( ) {[ , ] [ , ] }W A T T T T    tetrahedral group derived from the Coxeter-Dynkin diagram 

and it is the symmetry of a tetrahedron as we have seen. 

b) The group 
3 2

( ) {[ , ] [ , ]}W A C T T T T    is the proper rotational subgroup of the octahedral group 3( )Aut A . In 

another paper [23] we have proved that it is the symmetry of the snub cube, a chiral polyhedron, and one can 
construct the vertices of the snub cube by the action of the group on a vector. 

The group 4 2 {[ , ] [ , ] }hT A C T T T T      is the pyritohedral group representing symmetry of a pyritohedron, 

an irregular dodecahedron with irregular pentagonal faces which occurs in pyrites.  For the interested reader we 

give here the matrix representations of the generators of the group 3( )Aut A acting on the quaternionic imaginary 

units. 
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1 2 3

0 1 0 1 0 0 0 1 0 1 0 0

1 0 0 ,  0 0 1 ,  1 0 0 ,   0 1 0

0 0 1 0 1 0 0 0 1 0 0 1

r r r 

 

    

       
       
       
              

                         (21) 

 

3.1 The fcc lattice as the root lattice of A3 

The group generators of the affine 
3( )aW A are the three reflection generators 

1 2 3 0, ,  and r r r r , where 
0r acts like a 

translation by the highest root 
1 2 3 2 3H e e        , that is, 

0 Hr    . A general vector of the root lattice is 

then given by 
1 1 2 2 3 3 1 2 3;  , ,p b b b b b b      which can be written in terms of quaternions as  

                         

                                               
1 1 2 2 3 3 1 2 3; , ,p m e m e m e m m m    .                                               (22) 

 

The root system of 
3A  is the orbit 

3 1 2 2 3 3 1(1,0,1) { , , }A e e e e e e       consisting of 12 quaternions representing the 

centers of the edges of a cube. Including the orbit 
3

(0,0,0)A which corresponds to the origin, the root system represents 

the “non-conventional” face centered cubic cell [24]. It is easy to prove that the Wigner-Seitz cell of the fcc lattice is 

the Catalan solid, the rhombic dodecahedron, dual to the Archimedean solid cuboctahedron determined by the root 

system of
3A . The vertices of the rhombic dodecahedron which constitutes the Wigner-Seitz cell can then be written as 

the union of the orbits
3 3 3

(1,0,0) (0,1,0) (0,0,1)
A A A
   whose quaternionic vertices are given in (18). The rhombic 

dodecahedron represented by the set of vertices is depicted in Figure 6.  

The centers of the faces of the rhombic dodecahedron are the vertices given by  
3

1 2 2 3 3 1

1 1
(1,0,1) { , , }

2 2
A

e e e e e e       . 

Note that the rhombic dodecahedron tiles the 3D Euclidean space, however, it is not vertex transitive under the 

group
3( )Aut A , but rather face transitive.  

 
Figure 6. The rhombic dodecahedron, Wigner –Seitz cell of the fcc lattice. 

 

3.2 The bcc lattice as the weight lattice of A3 

The weight lattice 
3A   is generated by three weight vectors 

1 2 3(1,0,0),    (0,1,0),    (0,0,1).      A general vector 

of the lattice is given by 1 1 2 2 3 3 1 2 3,   , ,q a a a a a a      . In terms of quaternions, a weight lattice vector consists 

of the linear combinations of the quaternionic units;  the coefficients of the unit vectors are either all integers or half 

integers. Recall that the root lattice consists of the quaternions obtained as the linear coefficients of the quaternionic 

imaginary units with integer coefficients only. We note that the orbits 
3 3 3

(1,0,0) (0,0,0) (0,0,1)A A A  form the body 

centered cubic cell where the origin represents the central lattice point. One can easily prove that the nearest lattice 

points to the origin are the orbits
3 3 3

(1,0,0) (0,1,0) (0,0,1)A A A  . From (18) we deduce that the distance to the lattice 

points represented by the vertices of the square 
3 3

(1,0,0) 0,0,1)A A is 
3

0.866
2

 , but the next nearest points are on 

the orbit
3

(0,1,0)A  at a distance 1. As usual, the walls of the Wigner-Seitz cell bisect the lines joining these nearest 

points to the origin. It is easy to show that the intersections of these planes determine the vertices of the Wigner-Seitz 

cell as the orbit 
3

1
(1,1,1)

4
A , which is a truncated octahedron as shown in Figure 7, and the vertices of which are given  

by                

3 1 2 2 3 3 1 1 2 2 3 3 1

1 1
(1,1,1) { 2 , 2 , 2 , 2 , 2 , 2 }

4 4
A

e e e e e e e e e e e e             .              (23) 
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Figure 7.  Truncated octahedron. 

 

4. Construction of the sc and the bcc lattices as the affine Coxeter-Weyl groups Wa (B3)  

 

      The Coxeter-Dynkin diagram of 
3B  leading to the octahedral group 

3( ) hW B O is shown in Figure 8.  

 
Figure 8. The Coxeter-Dynkin diagram of 

3B  with quaternionic simple roots. 

 

The Cartan matrix of the Coxeter-Dynkin diagram of 3B and its inverse matrix are given by 

2 1 0

1 2 2

0 1 2

C

 
 

  
 
  

, 1

1
1 1

1 1 1 2

1 2 2 ,  1 2 1

1 3 1 3
1 1

2 2 2 4

C G

  
  
  

    
  
  

   

.                                      (24) 

The generators, 

 
1 1 2 1 2

1 1
[ ( ), ( )]

2 2
r e e e e


    ;

2 2 3 2 3

1 1
[ ( ), ( )]

2 2
r e e e e


    ; 

3 3 3
[ , ]r e e


           (25)                       

generate the octahedral group which can be written as  

 

  3 3 4 2( ) ( ) {[ , ] [ , ] [ , ] [ , ] }W B Aut A S C p p p p t t t t        , ,p T t T  .           (26)                     

    

where the shorthand notation  
3( ) {[ , ] [ , ] [ , ] [ , ] }W B T T T T T T T T         is given in (19). The weight vectors 

1 2 3,  and    are determined from the simple roots 1 1 2 2 2 3 3 3, ,e e e e e          as      

 

         
1 3 2 1 2 3 1 2 3

1
, , ( )

2
e e e e e e         .                                                   (27)                             

 

The orbits 
3 3

(1, 0, 0) , (0,1, 0) ,
B B

and
3

(0, 0,1)
B

  represent an octahedron, a cuboctahedron and a cube respectively. Here the 

orbit 
3

(1,1,0)B  represents the truncated octahedron which is obtained as the orbit 
3

(1,1,1)A  under the group 3( )W A .  

Note that 3B consists of long roots and short roots of norms 2 and 1 respectively. The octahedral group 

3( ) hW B O in (26) generates a root system consisting of the roots 

 

3 3
1 2 3 1 2 2 3 3 1

(1, 0, 0) (0,1, 0) { , , } { , , }
B B

e e e e e e e e e            .                     (28) 

 

It is clear from (28) that they constitute two different orbits; however the second set is   merely a linear combination of 

the first set of vectors. 

By the affine extension of 3B we note that the quaternionic highest root is
1 2H

e e   . Therefore the generator 

0r corresponding to the highest root 
1 2H

e e   leads to a translation
0 1 2

r e e    . This represents a reflection of the 

origin with respect to the plane bisecting the vector 2  at the point 2

2


. A general root lattice vector is then given by 

1 1 2 2 3 3
,  p b b b     with

1 2 3
, , b b b  . 
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4.1 The sc lattice as the root lattice of B3  

The root lattice is generated by the short roots 
1 2 3, ,e e e of 

3B and a general root lattice vector is given in terms of 

quaternionic units as
1 1 2 2 3 3 1 2 3;  , ,p m e m e m e m m m    . Including the origin the simple cube has the vertices  

 

                   
1 2 3 1 2 2 3 3 1 1 2 30,  ,  ,  ,  , , , e e e e e e e e e e e e     .                                                 (29)                                          

 

The reciprocal lattice has the same generator vectors 
1 2 3,  ,  e e e . The Wigner-Seitz cell can be determined around the 

origin by bisecting the lines joining the origin to the vertices
1 2 3
, ,e e e   . Intersecting planes determine the vertices of 

the Wigner-Seitz cell which represents the cube given by the orbit  

  
3 1 2 3

1
(0,0,1) ( )

2
B e e e    .                                                                (30)                                                   

4.2 The bcc lattice as the weight lattice of B3 

The weight lattice is exactly the same lattice as determined by the weight lattice 
3A  , since the weight vectors 

will be the linear combinations of the quaternionic imaginary units with either integer coefficients or half integer 

coefficients. Here the nearest neighbors of the origin are the vectors 
1 2 3

1
( )

2
e e e   and

1 2 3{ ,  ,  }e e e   . As we 

have seen in the case of 
3A  , the Wigner-Seitz cell is the truncated octahedron whose vertices are determined as the 

orbit
3

1
(1,1,0)

4
B

. 

5. Projections of the A3 and B3 lattices onto their Coxeter planes 

Projection of higher dimensional lattices to lower dimensional spaces is an interesting technique in the 

description of quasicrystallography. In reference [18] we proposed that in the projection technique the Coxeter number 

and the Coxeter integers play important roles. We here describe the technique in applying it to 
3A and 

3B lattices 

although the result is not a quasi crystal. Every Coxeter group has a maximal dihedral subgroup of order 2h where h is 

the Coxeter number. It goes as follows: partition the simple roots into two sets of roots so that each set consists of 

orthogonal roots. In the case of 3A and 3B these sets are 1 3 2{ ,  } and    . We now consider the case of 3A where we 

define the Coxeter plane determined by the vectors given by  

1 1 3 2 2 2 2 3

1
( } 2e  ,  

2
e e                                                             (31) 

which is orthogonal to the vector 
3 1 3 1

1
( } 2e

2
     . We now define the generators 

1 1 3 2 2
 and R rr R r   which 

satisfy the relation 4

1 2( ) 1R R  .Orthogonal projection will be made onto the Coxeter plane determined by the 

vectors
1 2
 and   in which 1 2 and R R  act as reflection generators. 1 2 and R R  do in fact generate the dihedral subgroup 

4D of 3A of order 8. The orthogonal set of vectors in the Coxeter plane can be taken as the quaternionic unit vectors 

2 3 and e e .  Let us recall that the root lattice vectors are given by  1 1 2 2 3 3;p m e m e m e    
1 2 3
, ,m m m  . The 

orthogonal projection of the 3A lattice means one takes only the set of vectors 
2 2 3 3 2 3

; ,m e m e m m  which constitutes 

a square lattice, or  in other words, the root lattice of the Coxeter-Weyl group 2B  as shown in Figure 4. Projection of 

the weight lattice onto the Coxeter plane also includes  the set of quaternions 2 3 and e e with half integer coefficients as 

shown in Figure 4.  

For the orthogonal projection of the lattice 3B , we follow the same technique; however the group generated by 

the generators 1 2 and R R is the dihedral group 6D of order 12 since 6

1 2( ) 1R R  . Here the Coxeter plane is determined 

by the vectors 1 1 2 3

1
( 2 )

3
e e e     and 2 2 3e e   . Since the angle between them is 0150 , the reflection 

generators generate the dihedral group 6D of order 12. This is the symmetry of a hexagon. The third vector 

3 1 2 3

1
( )

3
e e e      is orthogonal to the Coxeter plane. The projection of the 3B lattice onto the Coxeter plane will 

lead to a honeycomb lattice as shown in Figure 2. 
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6. Conclusion 

The crystallographic Coxeter groups, in other words, the Coxeter-Weyl groups, are the skeleton of the Lie groups 
which may have many applications in quasicrystallography. We have shown in this paper that the Coxeter-Weyl 

groups acting in 2D and 3D directly describe the square, hexagonal, sc, fcc and bcc lattices. The advantage here is that 

they can be associated with some finite subgroups of quaternions and the vertices can be represented by quaternionic 

imaginary units. The symmetries of all these lattices have been explicitly demonstrated. This is a novel aspect of the 

quaternionic lattices in which not only the lattice vectors but also the group elements are represented by the 

quaternions. Since the quaternions can be used to describe the spin 
2

1
 states of electrons or some atoms we anticipate 

that the lattice structures in 2D and/or 3D with explicit spin dependence can be described by the quaternionic lattice 
structures. Another interesting aspect of this work is that we have developed an orthogonal projection technique of the 

3 3 and A B lattices leading to the square and the honeycomb lattices respectively.  It is an interesting observation that, if 

one views the 3D lattices from the Coxeter plane, one may observe the square or honeycomb lattice behaviors in the 

3 3 and A B lattices respectively.  
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