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ABSTRACT: In complex analysis, an elliptic function is a meromorphic function that is periodic in two directions.
Just as a periodic function of a real variable is defined by its values on an interval, an elliptic function is determined by
its values on a fundamental parallelogram, which then repeat in a lattice. Such a doubly periodic function cannot be
holomorphic, as it would then be a bounded entire function, and by Liouville's theorem every such function must be
constant. Historically, elliptic functions were first discovered by Niels Henrik Abel as inverse functions of elliptic
integrals, and their theory was improved by Carl Gustav Jacobi; these in turn were studied in connection with the
problem of the arc length of an ellipse, whence the name derives. In this paper, we extend Floquet theorem and another
theorem (which is mentioned in [1]) related to it, which are dependent on elliptic functions.

Keywords: Meromorphic function; Periodic function; Elliptic function; Floquet Theorem; Fundamental matrix.
S o8 A5 jaa g (i gall AdeLiaa J) gl
Lo dana B iU g dana duas LS

WJlae o lgaty Sida sl 4y sall Alall Cay a3 o Walie cpalaily o) )50 <13 ) 55 pe Ala (gaial) Jalaill 3 Gaadll) Al s : adlal)
RAARPRIS oi‘ubjﬂ\ Adebiae A o3g] (Say Y ASWEN (8 lld 2y ) S0 (1) (bl £ 3Rl (5 ) sin e Leasdy uailill Allal) <5
:Uam\)g'é)A JsY il d\}ﬂ\ qmﬁ\eﬁ‘gs_uu ALl 4S8 o) s M\Adﬂd}.ﬁ ‘Jﬂﬂ}:\l:\.ﬂ)&ﬁ G g LIS 3aida Ally Maie o) S LgaY
e L8Ol ) sall 038 Al 50 a3 (5 AT Aiali (e s ¢ s il s SIS A 53 Lyl Lgmand a3 5 el OISl de ) oS ol iy yia 5l
g Ala i3 ([1] o 3sSaal) oAl 4 jue 5 Sl Dia yae cad) 138 8 aend anY) Leildac) o3 138 (e s ol adall (o gil) sha Al

Al J) ol e aaied il

b 28 il (S L e iUl AUAD) y y al) AN A o sl AN s Agalial) clalS)

@O0

1. Introduction

I n our opinion, complex analysis is one of the most beautiful areas of mathematics. It has one of the highest ratios of
theorems to definitions (i.e., a very low “entropy”), and many applications to things that seem unrelated to complex
numbers. Also, it is a comprehensive subject, which provides every mathematician with helpful data. In this respect
and due to the usefulness of this subject, we have chosen elliptic functions to be the focus of our work. We need to give
a definition of what an elliptic function is, so we will restrict ourselves to meromorphic functions which are functions
having only poles as singularities. A doubly periodic function is a function that has two primitive periods, namely
2w; and 2w, with

f@z+2mw; +2nw;) = f(2); mneLZ

The set of all points of the form 2mw; + 2nws;, with m and n being integers is called the period lattice. An
elliptic function is a meromorphic function that admits two independent primitive periods. At least one of the two
primitive periods of an elliptic function should be complex since the ratio of these two periods should be non-real.
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DOUBLY PERIODIC FUNCTIONS AND FLOQUET THEOREM

In 1998, Gesztesy and Weikard [2] provided an overview of elliptic algebro-geometric solutions of the KdV and
AKNS hierarchies, in which they concentrated on Floquet theorem. Also, Weikard in 2000 [3] dealt with differential
equations with meromorphic solutions, which is related to Floquet theorem, while Chouikha [4] paid more attention to
properties and developments of elliptic functions, and in particular Jacobi elliptic functions. The main work in this
paper is the extension of the Floguet theorem based on elliptic functions.

2. Preliminaries

Definition 2.1. A function f: C — C,, with two periods 2w; and 2ws, the ratio of which is not real, is called ‘doubly
periodic’.

Definition 2.2. A function that is analytic in the region D except for poles in D, is called ‘meromorphic’ in D.
Definition 2.3. A doubly periodic meromorphic function is called “elliptic’.

Table (1) contains 12 Jacobi elliptic functions (as examples of elliptic functions) with their periods, zeros, poles, and
residues of the functions at the poles.

Table 1. Some information on Jacobi elliptic functions.

Functions Periods Zeros Poles Residues
cd(zk) | 4mK+2nK'i | @m+DK+2nKi | @m+DK+@n (—D)™ 1k
cn(z k) | 4mK+4nK'i | 2m+2n+ 1)K + 2nK'i 2mK + (2n + ;—)Il()LK l (—)mn-1i/k
cs (z,k) | 2mK + 4nK'i (2m+ 1K + 2nK'i 2mK + 2nK'i (-

dc (z,k) | 4mK +2nK'i | 2m+ DK + (2n ’ (2m + DK + 2nK'i (—pm-1
dn(z, k) | 2mK +4nK'i | 2m+ 1)K + (2n+ DK’l 2mK + (2n+ DK'i (=)™
ds (z,k) | 4mK+4nK'i | 2m+ 1)K + (2n+ 1)1(’1 2mK + 2nK'i (—1)m+n
nc (z,k) | 4mK + 4nK'i 2mK + (2n + ;_)Il()lK l (2m + DK + 2nK'i (—1p)min-1/g!
nd (z,k) | 2mK + 4nK'i 2mK + 2n+ DK'i Cm+ DK + (2n , (D™ ti/k
ns (z,k) | 4mK + 2nK'i 2mK + (2n + DK'i 2mK + ZnK-"_i bict (=)™
sc(z,k) | 2mK + 4nK'i 2mK + 2nK'i (2m+ DK + 2nK'i ()" 1/K’
sd (z,k) | 4mK + 4nK'i 2mK + 2nK'i Cm+ DK + (2n , (—1)m* =1/ (k. k"
sn(z k) | 4mK + 2nK'i 2mK + 2nK'i 2mK + (2n + ;—)Il()LK l (-D™/k

where 0 <k <1, k' =v1-—k?,

T g 1
F (E'a) - UJ\/(l —v2)(1 — a2v?) dv,

K=F (gk) and K' = F (gk)

More information about elliptic functions is provided in [5].

Definition 2.4 [3, p3]. Two matrices A, B € E™™ (where E denotes the field of elliptic functions of the same
periods) are said to be of the same kind (with respect to E) if there exists an invertible matrix T € E™™ such that
B =T Y(AT —T') and T’ is the derivative of matrix T.

Example 2.5. Two matrices A = [(1) Sq t] and B = [1 Zsnt

1—-2snt

+2snt
—2snt

an invertible matrix T = B g] suchthat B = T~1(AT — T").

] are of the same kind since there exists

It is obvious that the set E is closed under the operations of addition, subtraction, multiplication, division by non-
zero divisor, and differentiation [2, p278]. Now, we consider the set S of all invertible matrices whose entries are
elliptic functions of the same periods (or the entries of the matrices are elements of E).
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Note 2.6. Since the all the operations of addition, subtraction, multiplication and differentiation on S depend directly
on the operations on E, and E is closed under these operations, we can say that S is closed under the all these
operations.
Theorem 2.7. Any pair of matrices in S is of the same kind.
Proof. Since the relation “of the same kind” is an equivalence relation [3, p3], then every element of S is of the same
kind as itself. Thus we prove the theorem for any distinct pair of matrices in S, and for this purpose we show the
elements of S by the set {T; ; i € N}. At the first step, we fix A = T; and choose T,,, € {T;; i €N, i # 1} arbitrarily.
By Note 2.6 and the closedness property of S, T, T,,, and AT,, arein S ,and then
Tnl(ATy, — Ti,) € S.
We name this element B,,, (s0, B,,, € S). Thus for two elements A and B, in S there exists T,,,, € S such that
By, = Trgll(ATml - Tr’nl)-
Thus A and B, are of the same kind. Again, we choose T,, €{T;; (€N, i# land i #m,} and, in the same
way as above, we can say that
Tl (ATy, — Tr,) € S.
We name this element B, (s0, B,,, € S). Thus for two elements A and B,,, in S there exists T,,,, € S such that
Bmz = Trgz1 (ATmz - TT;lz)'
Thus A and B,,, are of the same kind, and so on. In the second step, we let A =T, and repeat the previous step. We
continue by choosing the elements A and T,,,, (m; € N), such that A is fixed and T,,, is arbitrary, to complete the
proof.

3. Extension of Floquet theorem

Remark 3.1. In [3] it has been mentioned that, in the basic work of Floquet, the independent variable is complex,
and the entries of the matrix of the coefficients are analytic functions, and that if these coefficients are not so, then the
only possible singularities are isolated singularities. Thus, if we want to extend the Floguet theorem the poles of the
entries of the matrix of the coefficients do not affect the extension, because when establishing the theorem, Floquet
took it into consideration that some of the functions might have isolated singularities and we extend this theorem
depending on the periods of the matrix of the coefficients, and assume that the matrix of the coefficients belongs to S.
In other words, in this paper the entries of the matrix of the coefficients are meromorphic and doubly periodic
functions.

Now, let X, (t), -+, X, (t) be n solutions of the linear homogenous system

X' =A@ X (1)

and  X(6) = [[X1(O)] - [X,(©]], so X() is an n xn matrix solution of (1). If X,(t), -, X,(t) are linearly
independent, then X (t) is non-singular and is called a fundamental matrix.
Theorem 3.2. Consider the linear homogenous system (1), where A(t) € S. If W (t) is a fundamental matrix of system
(1) suchthat W(t,) =1 (where I represents the identity matrix), then:
i. W(t+ 2mw; + 2nw;) are also fundamental matrices of (1), Vm,n € Z.
ii. Corresponding to every such W (t) there exist an invertible periodic matrix P(t) of period 2mw,; + 2nw; and a
constant matrix R such that W (t) = P(t)eR.
Proof. At the beginning, we mention that our proof will be based on using mathematical double induction. We divide
the proof of the theorem into two parts:
i. First we prove the theorem for fundamental periods of A(t).
Case 1: If m =1, n = 0, then similar to the proof of the Floquet theorem in [6], W (t + 2w, ) is a fundamental matrix
of (1) and there exist an invertible matrix C, and a constant matrix R, such that

Co = W(2w,) = e?W1ko,
and we define the matrix P, (t) by

Py(t) = W(t)e tRo
then it is clear that P, (t) is periodic of period 2w, and invertible. So
W (t) = Py(t)etRo

is a fundamental matrix of (1).
Case 2: If m =0, n =1, in the same way W (t + 2ws) is a fundamental matrix of (1) and there exist C; and R;
such that

C; = W(2ws) = e?WsRo
and we define the matrix P (t) = W (t)e tRo . Clearly P;(t) is periodic of period 2w and invertible.

So
W(t) = Pi(t)etRo.
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ii. In this part we prove the theorem for any period of A(t).
Case 1. If m =n, suppose m =n # 0.
Now, form =n =1,
W(t + 2mw,; + 2nw;) = W(t + 2w; + 2ws)
and since A(t) € S,
W'(t + 2w, + 2ws) = A(t) W(t + 2w, + 2wy).
Then W(t + 2w; + 2wy) is a matrix solution of (1) and, since it is invertible, W (t + 2w, + 2ws3) is the fundamental
matrix of (1). Therefore, there exists an invertible matrix C, such that
W(t+ 2w, + 2w;) = W(t) Cy;

By takingt =t, =0, C; = W(2w; + 2w;). So, there exists a matrix R, such that C; = e(?W1+2w3)R1 gee [6, P.139].
We define the matrix P, (t) = W (t)e*R1. In this way we easily show that P, (t) is periodic of period 2w; + 2w; and
invertible. So

W(t) = P,(t)etF,
Suppose that the theorem is true for = n = k . This means W (t + 2kw; + 2kws) is a fundamental matrix of (1) and
there exists an invertible matrix €, = W (2kw; + 2kws) and a constant matrix R, such that

Ck — e(zkw1+2kw3)Rk
and
W(t) = P(t)e' Rk

where P, (t)is invertible and periodic of period 2kw; + 2kws.
We want to prove that it is true for m = n = k + 1. Now,
W'(t+2k+ Dw, + 2k + Dws)
=At+2(k+ Dw; +2(k+ Dwy) . W(t+ 2k + Dwy + 2k + Dws)
= A((t + 2kwy + 2kws) + Qwy + 2w3)) . W (t + 2(k + Dw, + 2(k + Dw,)
= A(t + 2kwy + 2kw3) W (t + 2(k + Dw; + 2(k + Dwy)
=A@) Wt +2(k+ Dw, +2(k + Dws)
So, W(t+2(k+ Dw, + 2(k + 1)ws) is a matrix solution of (1) and also an invertible matrix, then it is the
fundamental matrix of (1). Since W (t) and W (t + 2(k + 1)w,; + 2(k + 1)w;) are both fundamental matrices of (1)
we must find Cy 4, in which
W(t+ 2k + Dw, + 2k + Dws) = W(L). Cryq.

Fort =t, =0,
Cry1 = W2k + Dw, + 2(k + Dws)

= W(2kw; + 2wy + 2kws + 2ws))

= W(Zle)W(ZkW3 + 2w, + 2W3))

=WQRkw )W 2kw )W (2w, )W (2w3) = Cy - C;.

Hence we have found an invertible matrix C; 4, and for this invertible matrix there exists a matrix R;,; such that
Crrq = e Uk+1)w1+2(k+1)W3)Rjcy 1
We define a matrix Py (t) by Pyyq (£) = W(t)e R,
Py (t+2(k+ Dwy + 2(k + Dwy)
=W(t+ 2k + Dw; + 2(k + 1Dwy). e~ E+20crDwi+2(k DW3)Rpct
=WQ).WQReK + Dw, + 2(k + Dw,). et Riwr o= QU DW1+2(k+Dw3)Rict
= W(t).e t Rk,
So, Py, (t) is periodic of period 2(k + 1)w; + 2(k + 1)w; and it is invertible. Hence
W(t) = Peyr(t). F Frtr;
and the theorem is true for all m,n € N; m = n.
Case 2: If m # n.
a. We fix m = a; a € N; and prove the theorem for n = 1, 2,3,--- by mathematical induction. For n = 1, similar to
case 1, we can easily show that W (t + 2aw,; + 2w3) is a fundamental matrix of (1), and we can find the invertible
matrix C; = W (2aw; + 2w3), and for this matrix there exists a matrix R; such that C; = e(2@%1+2w2)R1_\We define a
matrix P;(t) by P;(t) = W(t)e tRi. We can also show that it is periodic of period 2aw; + 2wy, and is an invertible
matrix. Then W (¢) = P; (t)et®i. Suppose the theorem is true when n = k. That means W (¢ + 2aw, + 2kws) is the
fundamental matrix of (1) and there exist
Cp = W(QR2aw, + 2kws;)
and Ry, such that
Ci = e(2aw1+2kw3)R; gand Pi(t) = W(t)e'tRl*c

which is invertible and periodic of period 2aw; + 2kws.
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For n =k + 1 we can easily show that W (t + 2aw; + 2(k + 1)ws) is a fundamental matrix of (1) and find the
invertible matrix

Cri1 =Cr.Co =W(Q2aw, + 2kws). W (2ws)
and for this invertible matrix there exists a matrix Ry, such that

C;+1 — e(2aw1+2(k+1)w3)R;‘c+1.

We define the matrix P, (t) by Py, (t) = W(t)e *Rk+1 and show that it is periodic of period 2aw, + 2(k + 1w
and is an invertible matrix. Then W (t) = P,jﬂ(t)etRl*m. Again, we fix m = a + 1 and repeat the previous steps
b. We fix n = b; b € N and prove the theorem for m = 1, 2, 3, --- by mathematical induction. Hence the theorem is
true forall m,n €N,

. . | =x,+snt . . .
Example 3.3. Consider the linear homogenous system {zl, _ il S ; the fundamental matrix of this system is
2 — 12

W(t) = [et % ef(—In(dnt+kcent)+In(1 +k))

et

0
Note that W (0) = I, and then, by the above theorem, W (t + 4K + 8K'i) is also the fundamental matrix of the system
where

k<1, K'=[—2—; k=vI-kZ

1-k'? sin29

_ (790

Kk fo V1-k2 sin260

Also for W(t) we can find a constant invertible matrix R = [(1) (1)] and a doubly periodic matrix P(t) of periods
4K + 8K'i such that

k

T <\/1 — k2sn2t + ky/1 — snt + 11n(1 + k))
P(t) = k
0 1

and W (t) = P(t)e'R.

Note 3.4. We have only explained the case for the extension of the Floquet theorem when m,n € N. However it is
clear that this extension is true for all m,n € Z, and we can show this by considering —2w; and —2ws; as the
fundamental periods of A(t). Thus the proof of the extended theorem by depending on this note is completed.

4. Another relative to Floquet theorem

The Halphen theorem is another relative of the Floquet theorem and expresses the fact that, if in a homogeneous
linear system of differential equations the matrix of the coefficients are rational functions that are bounded at infinity
and if also the general solution is meromorphic, then a fundamental matrix of solutions exists such that its elements are
in the form R (x) exp(Ax), in which R is a rational function and A is a special complex number. Due to the closeness of
the Halphen theorem to the Floquet theorem, the rest of the article presents a version of the Halphen theorem as a
relative of Floquet theorem.

In this version, the entries of the matrix of the coefficients of system (1) are bounded at a bounded region which
is suitably large but contains a finite number of parallelograms.

Definition 4.1. For any elliptic function f on C with two fundamental periods 2w; and 2w, we define the function f°
by

w
f@)=f <—(4mK n ZnK’i)iIOg t); w = 2mw; + 2nws,

which is a meromorphic function on € — {0}.

Remark 4.2. Since the entries of A(t) are elliptic functions of two periods 2w, and 2w, then the z —plane will be
divided into an infinite number of parallelograms and period strips by these two periods, in such a way that each two
non-parallel period strips will intersect each other in one parallelogram. Let L, and L, be two period strips which
intersect each other in the period parallelogram denoted by A.

e

O

~

~
\{2 xms“
Figure 1. Period parallelogram generated by the intersection of two non-parallel period strips.
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Definition 4.3. We define a bounded region L by taking the period strip L, which is suitably large but contains a finite
number of parallelograms.
Theorem 4.4. Suppose that all entries of the matrix of the coefficients A(t), of system (1) are bounded at L. If system
(1) has only meromorphic solutions, then there exists a constant (n x n) matrix J in Jordan normal form and an
(n x n) matrix R° whose entries are rational functions over C, such that the following statements hold:
i. Suppose that there are non-negative integers v,, -+, v,_, such that 4, A +iv,,---,1 + iv,_, are all the eigenvalues
of A°(0) which are equal to A modulo . Then A is an eigenvalue of | with algebraic multiplicity r.

ii. System (1) has a fundamental matrix given by

X() = [R°(exp(i(4mK + 2nK'i)t/w)) - exp((4mk + 2nk’i)]t/w)]. 2
Conversely, suppose that R° is an invertible (n X n) matrix whose entries are meromorphic functions and J is a
constant (n X n) matrix. Then X(t) as in the equation (2) is a fundamental matrix of system (1) where A(t) € S and is
of the same kind as a matrix whose entries are bounded at L.
Proof. We define the function f° as in definition 4.1. On the other hand, in [1] it was mentioned that if f is a doubly
periodic function, then f does not have finitely many poles in the period strip, and hence does not have definite limits
at the ends of the period strip, and consequently we cannot say f° is a rational function. So, to deal with this, we
define the bounded region L as in definition 4.3. Now, the theorem can be proved by taking = 4mK + 2nK'i , and the
rest of the proof is similar to the proof of the theorem 1 in [3]. To avoid our repeating the technical steps of the proof
and for better understanding, it is necessary that the reader to refer to [3].
Example 4.5. This example explains the converse of the above theorem.
Consider the linear homogenous system

X; =X + \/1 — snz(f(t)) . \/1 — kzsnz(f(t)) " Xy, 3)
X3 =X
and let R® = [(1] sn ({(t))] (where f(t) = %log e't) be an invertible matrix whose entries are meromorphic functions

and | = [(1) 2] be a constant matrix, then by the above theorem
_[1 sn(fO)],[ef 0]_ [ef efsn (f(t))]
0 tJ
Rixer = [L nUO) [ O]_[e" elonl
is the fundamental matrix of system (3) and it is clear that the matrix of the coefficients of the system
A(t) = Il \/1 — snz(f(t)) . \/1 — kzsnz(f(t))l
0 1

is of the same kind as matrix B that is bounded at L and B =

[S.Jl—snz(f(t)) Jl—kzsnz(f(t))+1 —;+§J1—sn2(f(t)) Jl—kzsnz(f(t))+1+;]
[—Z-Jl—snz(f(t)) Jl—kzsnz(f(t)) 1—3-J1—sn2(f(t)) Jl—k2sn2(f(t)) |

5. Conclusion

In this work, doubly periodic functions are introduced generally and some Jacobi elliptic functions are
specifically illustrated. The concepts of matrices of the same kind and additionally doubly periodic functions were
applied for the extension of Floquet theorem. Furthermore, there is a detailed description of any pair of matrices, the
entries of which are elliptic functions of the same periods, which are of the same kind. In addition it has been proved
that if W (t) is a fundamental matrix of system (1), then there exists an invertible doubly periodic matrix P(t) and a
constant matrix R such that W (t) = P(t)e‘R. Finally, another theorem that is related to the theorem of Floquet is
presented, with an example to explain it.
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