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ABSTRACT: In this paper, we employ mapping methods to construct exact travelling wave solutions for a 

modified Korteweg-de Vries equation. We have derived periodic wave solutions in terms of Jacobi elliptic 

functions, kink solutions and singular wave solutions in terms of hyperbolic functions. 
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 يس المعذلةرلحل معادلة كورتيج دو ف الخرائط  طرق رسم

 ادمنان كرشنان

حلول الموجة الذوسية بذلالة  أوجذنانتقال التامة لمعادلة كوستيج دو فشيس المعذلة. لالإنشاء حلول ا طشق سسم الخشائطوظف في ىزه الوسقة ن ملخص:

 ة بذلالة الذوال الزائذية.شارحلول كينك وحلول الموجو الودوال جاكوبي التناقصية، 

 

.ةنتقاليلاحلول الموجة ا، ةشارال موجةال حلول، معادلة كوستيج دو فشيس ،دوال جاكوبي التناقصية :كلمات مفتاحية   

1. Introduction              

ravelling wave solutions (TWSs) of nonlinear evolution equations have been extensively studied due to their 

significant applications in mathematical theory and other fields in physical sciences. The advantage of using 

travelling wave solutions is that the governing partial differential equation (PDE) reduces to an ordinary differential 

equation (ODE) which makes it easier to solve. Several methods using TWSs have been proposed such as the tanh 

method [1], the exponential function method [2], the Jacobi elliptic function (JEF) method [3], mapping methods [4-

7] etc. 

Solitary wave solutions (SWSs) of different types of Korteweg-de Vries (KdV) equations have been a field of 

intense study in many branches of Physics over several decades [8-11]. A variety of KdV equations have been 

proposed since the discovery of solitons. Because of the rich structures of the solutions, both mathematicians as well 

as physicists have been attracted to this field of research. 

In this paper, we derive periodic wave solutions (PWSs) of a modified KdV equation in terms of JEFs [12] and 

deduce their infinite period counterparts in terms of hyperbolic functions such as shock wave solutions and singular 

wave solutions using mapping methods. The mapping methods employed in this paper give a variety of solutions, 

such as hyperbolic function solutions, different types of JEFs etc., which other methods cannot do. 

2.   Mathematical Analysis 

In this section, we give an analysis of the  mapping methods which will be employed in this paper. The analysis 

given below is, in general, for a system of PDEs [13] but in this paper we have applied it for a single PDE. 

Consider a nonlinear coupled PDE with two dependent variables u  and v  and two independent variables x  

and t  given by  

( , , , , , , , ,...) = 0,t t x x xxx xxxF u v u v u v u v
                                                               

(1) 

where subscripts denote partial derivatives with respect to the corresponding independent variables, and F is a 

polynomial function of the indicated variables. 

T 
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Step 1: Assume that (1) has a travelling wave solution in the form  

                            
1 2

=0 =0

( , ) = ( ) = ( ), ( , ) = ( ) = ( ),

l l

i i

i i

i i

u x t u A f v x t v B f      (2) 

where = ,x t  ,i iA B  and   are arbitrary constants, 
1l  and 

2l  are integers and if  represents integer powers of .f  

The first derivative of f  with respect to   denoted by 'f  can be expressed in powers of f  in the form  

                            2 2 41
= ,

2

'f p f qf r   (3) 

where ,p q  and r  are arbitrary constants. The motivation for (3) was that the squares of the first derivatives of JEFs 

can be expressed in even powers of themselves. 

 

Step 2: Substituting (2) into (1), the PDE reduces to an ODE. Balancing the highest order derivative term and the 

highest order nonlinear term of the ODE, the values of 
1l  and 

2l  can be found. 

 

Step 3: Substituting for u  and v  and using (3), the ODE gives rise to a set of algebraic equations by setting the 

coefficients of various powers of f  to zero. 

 

Step 4: From the values of the parameters , , ,i iA B p q  and r , the solution of (1) can be derived. Thus a mapping 

relation is established through (2) between the solution to (3) and that of (1). 

It is to be noted that if the values of 
1l  and 

2l  are integers, we can use the method directly to get a variety of 

solutions in terms of hyperbolic functions or JEFs. If they are non integers, the equation may still have solutions as 

rational expressions involving hyperbolic functions or JEFs. The JEFs and their main properties have been described in 

Appendix. 

3.  A Modified KdV-type Equation 

In this paper, we derive a variety of solutions in terms of JEFs and their infinite period counterparts, which are 

kink solutions, SWSs or singular SWSs for a modified KdV-type equation derived in [14]. In a study by Wazwaz [15], 

he has derived kink solutions and single and multi SWSs for this equation using Hirota's method. The equation under 

consideration is  

   
3 34 4 4 16 = 0.xxt x xt t xxx x xx xu u u u u uu u u u u    

                                               
(4) 

We search for travelling wave solutions of (4) in the form  

                                ( , ) = ( ).u x t u   (5) 

 Substitution of (5) into (4) gives rise to the ODE  

                               
3(4 ) (4 ) 4( 4) = 0.uu u u u u           (6) 

 Dividing by 2(4 )u  and integrating with respect to  , we arrive at the equation  

                               
32 = 0,u Ku u    (7) 

 where K  is the integration constant. 

3.1  Mapping Method 

Applying the mapping method it can be seen that 
1 = 1l  and so we assume that (7) has the solution of the form      

                                                                                                
0 1( ) = ( ),u A A f                                                          (8) 

where f  satisfies (3) and 
0A  and 

1A  are constants to be determined. Cases in which 
1 > 1l  have been considered in 

[16]. 

Substituting (8) into (7) and using (3), we arrive at the following algebraic equations:  

                             3

1 12 = 0,qA A  (9) 

  

                            2

0 16 = 0,A A  (10) 

  

                            2

1 0 1( ) 6 = 0,p K A A A   (11) 

  

                          3

0 02 = 0.KA A   (12) 
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Solving these equations, we get  

                            
0 1= 0, = , = .

2

q
A A K p    (13) 

For illustration, we consider the following cases. 

Case 1. = 2, = 2, =1.p q r  

Now, (7) has the solution ( ) = tanhf    (see [4,5]). Therefore, (4) has the kink solution  

                        ( , ) = tanh( ).u x t x t   (14) 

 

Case 2. 2 2= (1 ), = 2 , =1.p m q m r   

Now, (7) has the solutions ( ) = snf    and ( ) = cdf    (see[4,5]). So, (4) has the PWSs  

                      ( , ) = sn( )u x t m x t   (15) 

and  

                      ( , ) = cd( ).u x t m x t   (16) 

As 1m  , the kink solution (14) is recovered from (15), and (16) gives a trivial constant solution. 

 

Case 3. 2 2= 2 , = 2, =1 .p m q r m   

In this case, (7) has the solution ( ) = cs .f    Therefore, (4) has the PWS  

                      ( , ) = cs( ).u x t x t   (17) 

As 1m  , (17) gives rise to the singular SWS  

                      ( , ) = csch( ).u x t x t   (18) 

 

Case 4. 2 2= (1 ), = 2, = .p m q r m   

Here, (7) has the solutions ( ) = nsf    and ( ) = dc .f    Thus, (4) has the PWSs  

                  ( , ) = ns( )u x t x t   (19) 

and                   

                                 ( , ) = dc( ).u x t x t   (20) 

As 1m  , (19) leads us to another singular SWS  

                  ( , ) = coth( ).u x t x t   (21) 

 

In the infinite period limit, (20) gives a trivial constant solution. It is worth mentioning that for Case 1, 

( ) = cothf    is also a solution which is a special case of Case 4 when 1m  . 

3.2  Modified Mapping Method 

This method gives a combination of a hyperbolic function or JEF and its reciprocal as solutions. In this case, we 

consider the solution of (7) in the form  

1

0 1 1( ) = ( ) ( ),u A A f B f                                                                                            (22) 

 where f  satisfies (3) and 
0 1,A A  and 

1B  are constants to be determined. Also, 1f   is the reciprocal of .f When 

1 = 0,B  this method reduces to the mapping method. 

Substituting (22) into (7) and using (3), we obtain the following algebraic equations:  

                  3 2

1 1 1 02 2 = 0, 6 = 0,rB B B A   (23) 

                  2 2

1 1 1 0 1 16 6 = 0,pB KB B A B A    (24) 

                 3

0 0 1 0 12 12 = 0,KA A B A A    (25) 

                  2 2

1 1 0 1 1 16 6 = 0,pA KA A A B A    (26) 

                 2 3

0 1 1 16 = 0, 2 = 0.A A qA A   (27) 

These equations lead us to  

                  0 1 1= 0, = , = , = 3 2 .
2

q
A A B r K p qr    (28) 
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We now consider some choices for the parameters, as the first three cases of Section 3.1, to obtain the following 

cases. 

Case 1. = 2, = 2, =1.p q r  

Here, (7) has the solution ( ) = tanhf   . So, ( ) = tanh( ) coth( )u     satisfies (7) with = 8.K   Therefore, (4) has 

the solution  

      ( , ) = tanh( ) coth( ) .u x t x t x t    
                                                      

(29) 

 

Case 2. 2 2= (1 ), = 2 , =1.p m q m r    

So, equation (7) has the solutions ( ) = snf    and ( ) = cdf    with 2= (1 6 )K m m    (see [4,5]). Therefore, (4) 

has the PWSs  

                                             ( , ) = sn( ) ns( )u x t m x t x t    
                                                     

 (30) 

and  

                                  ( , ) = cd( ) dc( ).u x t m x t x t                                          (31) 

As 1m  , the solution (29) is recovered from (30), and (31) gives a trivial constant solution. 

 

Case 3. 2 2= 2 , = 2, =1 .p m q r m  

In this case, (7) has the solution ( ) = csf    with 
2 2= 2 6 1K m m   . Thus, (4) has the PWS  

   
2( , ) = cs( ) 1 sc( ).u x t x t m x t     

                                          
 (32) 

As 1m  , (32) gives rise to the singular SWS (18). 

3.3  Extended Mapping Method 

This method gives a combination of two different JEFs as solutions. Here, we consider the solution of (7) in the 

form  
0 1 1( ) = ( ) ( ),u A A f B g                                          (33) 

where f  satisfies (3), 
0 1,A A  and 

1B  are constants to be determined, and g  satisfies  

                                             2 2 2

1 2 3 4= ( ), = .''g g c c f g c c f   (34) 

When 
1 = 0,B  this method also reduces to the mapping method. 

The motivation for (34) was the relationship of the second derivative of any JEF with itself and another JEF for 

some constants 
1 2 3, ,c c c  and 

4 .c As in (3), prime denotes differentiation with respect to   in (34) as well. 

          Substituting (33) into (7) and using (3) and (34), we obtain the following algebraic equations:  

                                  3 2

1 1 4 1 12 6 = 0,qA A c A B   (35) 

                                  2 3

2 1 1 1 4 16 2 = 0,c B A B c B   (36)  

                                  2 2

0 1 4 0 12(3 3 ) = 0,A A c A B   (37)  

                                  0 1 112 = 0,A A B  (38) 

2 2

1 1 0 1 3 1 12(3 3 ) = 0,pA KA A A c A B  
   

                                                            (39) 

                                  2 3

1 1 1 0 1 3 12(3 ) = 0,c B KB A B c B    (40) 

                                 3 2

0 0 3 0 12( 3 ) = 0.KA A c A B    (41) 

 Solving these equations, we obtain  

                                
0 1 2 1 1

3

1 3 1
= 0, = 3 , = , =

4 6 2 2

p K
A A c q B K c p

c


     (42) 

 with the constraint relation  

                                2 3 3 43 9 8 ( ) = 0.c c qc c p K    (43) 

 So, we can deduce from (42) that  

                                1

1

3

1
= .

2

p c
B

c


  (44) 

 

We consider the case 2 2= (1 ), = 2, =p m q r m  . 
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Case 1. 2

1 2 3 4= , = 2, = 1, =1.c m c c c   

So, (7) has the solutions ( ) = nsf    and ( ) = csg    with 21
=

2
K m . Therefore, (4) has the PWS  

                                 
1

( , )= ns( ) cs( ) .
2

u x t x t x t      (45) 

As 1m  , (45) gives rise to the singular solution  

                                
1

( , )= coth( ) csch( ) .
2

u x t x t x t      (46) 

 

Case 2. 2

1 2 3 4= 1, = 2, = , =1.c c c m c   

So, (7) has the solutions ( ) = nsf    and ( ) = dsg    with 21
= 1

2
K m  . Therefore, (4) has the PWS  

                               
1

( , ) = ns( ) ds( ) .
2

u x t x t x t      (47) 

As 1m  , (47) gives rise to the same singular solution (46). 

Case 3. 
2

1 2 3 42 2

1
= 1, = 2, = , = .

1 1

m
c c c c

m m
 

 
 

In this case, (7) has the solutions ( ) = dcf    and ( ) = ncg    with 21
= 1

2
K m  . Therefore, (4) has the PWS  

         21
( , ) = dc( ) 1 nc( ) .

2
u x t x t m x t      

       
 (48) 

In this case, as 1m  , (48) will lead to a trivial constant solution. 

Case 4. 2

1 2 3 42 2

1 1
= , = 2, = , = .

1 1
c m c c c

m m
 

 
 

Here, (7) has the solutions ( ) = dcf    and ( ) = scg    with 21
=

2
K m . Thus, (4) has the PWS  

              21
( , ) = dc( ) 1 sc( ) .

2
u x t x t m x t      

   
 (49) 

In this case also, as 1m  , (49) will lead to a trivial constant solution as in the previous case. 

 

In order to illustrate the properties of the travelling wave solutions, we draw some plots of the kink wave 

solution, as in Figure1, and singular wave solution, as in Figure2.  

   
Figure 1. Kink wave solution (14) with =1 .
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Figure 2. Singular wave solution (18) with =1 . .

 

4.   Conclusion 

The modified KdV-type equation under consideration was found to have shock wave solutions and singular wave 

solutions. It was not possible to derive solitary wave solutions in terms of sech functions using the method. It is worth 

investigating the possibility for such solutions as future research. 
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Appendix 

 Consider the function  

                           
0 2 2

( , ) = = .
1 sin

d
F m

m

 
 


  (A.1) 

Letting = sint  , we obtain  

                           
sin

0 2 2 2
= .

(1 )(1 )

dt

t m t




 

  (A.2) 

This is called Legendre's standard elliptical integral of the first kind. 

When 1

0 2
= 0, = = sin

1

x dt
m x

t
 


 , where = sinx  . 

When 1

20
= 1, = = tanh

1

x dt
m x

t
 

 , where = sinx  . 

For 0 < <1,m  we define   as the inverse of a function which is known as Jacobi Sine elliptic function, expressed in 

the form 1= sn x   so that = snx   or sn =sin  . Here, m  is known as the modulus of the JEFs  (see [12]). 

We define two other elliptic functions as  

                        
2 2cn = 1 = 1 sn ,x    (A.3) 

 and 

                         
2 2 2 2dn = 1 = 1 sn .m x m    (A.4) 

 

cn  is known as Jacobi cosine elliptic function and dn  is known as JEF of the third kind. 

As 0m  , sn sin ,cn cos      and dn 1.   As 1m  , sn tanh ,cn sech      and dn sech  . 

Note that ns , nc  and nd  are the reciprocals of the three JEFs and sc , cd , ds , cs , dc  and sd  are the 

ratios of the corresponding JEFs.  
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