SQU Journal for Science, 2021, 26(1), 22-30 DOI:10.24200/squjs.vol26iss1pp22-30
Sultan Qaboos University

Travelling Wave Solutions for Fisher’s
Equation Using the Extended Homogeneous
Balance Method

Mohammad M. Fares!, Usama M. Abdelsalam®?* and Faiza M. Allehiany3

'Department of Mathematics, University of Technology and Applied Sciences - Al Rustaq,
Oman; “Department of Mathematics, Faculty of Science, Fayoum University, Egypt;
3Department of Mathematics, Faculty of Applied Sciences, Umm Al-Qura University, Mecca,
Saudi Arabia. *Email: usamaahmad.rus@cas.edu.om.

ABSTRACT: In this work, the extended homogeneous balance method is used to derive exact solutions of nonlinear
evolution equations. With the aid of symbolic computation, many new exact travelling wave solutions have been
obtained for Fisher’s equation and Burgers-Fisher equation. Fisher’s equation has been widely used in studying the
population for various systems, especially in biology, while Burgers-Fisher equation has many physical applications
such as in gas dynamics and fluid mechanics. The method used can be applied to obtain multiple travelling wave
solutions for nonlinear partial differential equations.
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1. Introduction

he exact travelling wave solutions of nonlinear evolution equations play an important role in the study of nonlinear

physical phenomena, for example, the wave phenomena observed in fluid mechanics, plasma physics, optical
fibers, solid state physics, chemical kinematics, chemical physics and geochemistry. Explicit solutions to the
mathematical modelling of physical problems are of fundamental importance. Many methods have been developed for
finding the exact solutions of nonlinear evolution equations, such as the inverse scattering method [1, 2], bilinear
transformation [1, 3, 4], the tanh-function method [5, 6], extended tanh method [7-10], sine-cosine method [11, 12], F-
expansion method [13], general expansion method [14, 15], and (G'/G) method [16-18]. The homogeneous balance
(HB) method, which is a direct and effective algebraic method for the computation of exact traveling wave solutions,
was first proposed by Wang [19, 20]. Later [21,22], the HB method was extended to search for other kinds of exact
solutions. Fan [23] used the HB method to search for Backlund transformation and similarity reduction of nonlinear
PDEs. He also showed that there is a close connection among the HB method, Weiss, Tabor, Carnevale (WTC) method
and Clarkson, Kruskal (CK) method. The extended homogeneous balance method is used to solve many nonlinear
evolution equations [24-28].

The Fisher’s equation [29,30] is a nonlinear partial differential equation of second order.

Up = Uy, +u(l —uw).

Fisher proposed this equation as a model for the propagation of a mutant gene with u(x, t) denoting the density
of advantages. This equation is encountered in chemical kinetics, population dynamics, flame propagation,
autocatalytic chemical reactions and branching Brownian motion processes. The aim of this work is to propose an
extension of the homogeneous balance method to construct more other kinds of exact solutions to nonlinear PDEs. In
order to illustrate the effectiveness and convenience of the method, the method is applied to Fisher’s equation and
Burgers-Fisher equation.

In the following section, let us simply describe the extended homogeneous balance method.

2. Proposed analytical method
In general, consider a given PDE, say in two variables
H(u, U, Uy, Useyy ... ) = 0. (D)
We seek for the special solution of Eq. (1), the travelling wave solution, in the form

u(x, t) = u(()' ( =x—2 t, (2)

where 9 and L are constants to be determined later. Using the transformation (2), Eq. (1) reduces to a nonlinear
ordinary differential equation (ODE). The next crucial step is that the solution we are looking for is expressed in the
form

n n
u@) =Y qo'+ ¥ bl + o], 3)
i=o i=1
and
w =k+Mw+ Pw? 4

where a; and b; are constants, while k, M and P are parameters to be determined later, w = w({), and w' = dw/dg.
The mechanism for solitary wave solutions to occur is the fact that different effects (such as, the dispersion and
nonlinearity) that act to change the wave forms in many nonlinear physical equations have to balance each other.
Therefore, one may use the above fact to determine the parameter n, which must be a positive integer, and can be
found by balancing the highest-order linear term with the nonlinear terms [26]. Substituting (3) and (4) in the relevant
ODE will yield a system of ODEs with respect to a,, a;, b;, k, M, P and A (where i = 1,...,m), because all the
coefficients of w’/ (where j = 0,1,...) have to vanish. With the aid of MATHEMATICA, one can determine a,, a;, b;, k,
M, P and A.

It is to be noted that the Riccati equation (4) can be solved using the homogeneous balance method as follows:

Case |: when P =1, M = 0, the Riccati Eq. (4) has the following solutions

w = {[c]ll = V=k tanh[V=k{], withk < 0,—V=k coth[v—k{], with <0, (5)

w=—%, with k =0, (6)
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and
w = {[c]iVk tan[Vk{], with k > 0, —Vk cot[vVk{], with k > 0. @

Since coth- and cot-type solutions appear in pairs with tanh- and tan-type solutions, respectively, they are omitted in
this paper.

Case II;, Let w = Y™, A;tanh!(p,{). Balancing w’ with w? leads to
w = Ay + A tanh(p, Q). (8)
Substituting equation (8) into (4), we have the following solution of Eq. (4)
S O L B
w = 2Ptanh(Z{) 2P,w1th Pk = yat 9
Similarly, let w = Y™, A;coth!(p,{), then we obtain the following solution:

—_n Pry_M
w= ZPCOth(Z 9 2p

2_.2
Mmszﬁtﬂ.

Case I11:, We suppose that the Riccati Eq. (4) has the following solutions of the form

w=Ag+ Xy (Aif' +Bif 7 g), (10)
with
_ 1 _sinh{
f - cosh(+r' 9= cosh{+r' (11)

Substituting equations (10) and (11) into (4), we have the following solution of Eq. (4)

_ 1 sinh({)+yVr2-1 . _ M?*-1

w=—= <M + Y — ),w1th Pk = (12)

where r is an arbitrary constant. It should be noticed that solution (12), as r = 1, degenerates to

__t g
w=-—— [M + tanh (5)] (13)
Case IV:, We suppose that the Riccati Eq. (4) has the following solutions of the form
w = Ay + X", sinhi=1(4;sinhn + B;coshn), (14)
where dn/d{ = sinhn or dn/d{ = coshn Balancing o’ with w? leadstom = 1

w = Ay + A;sinhn + B, coshn. (15)

When dn/d{ = sinhn, we substitute (15) and dn/d{ = sinhn into (4) and set the coefficient of sinhincosh/n,i =
0,1,2,j = 0,1 to zero and solve the obtained set of algebraic equations to get

-M 1

A0=;,A1=0,Bl=;, (16)
2_
where k = 22 , While
4P
-M , 1 1
AO_;lAl_i ;IBl_;I (17)
M2-1 .
where k = 7 .Todn/d{ = sinhn we have
sinhn = —csesh{, coshn = —coth{. (18)
From (16)-(18) we obtain
w = — T (19)
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M
where k = —, and
4P

M+tcsesh{+coth{
2P ’

w =

(20)

M2%-1
where k =

3. Applications of the proposed method

In this section, we will illustrate the above approach for a class of nonlinear evolution equations namely, Fisher’s
equation.
3.1 Example 1. Fisher’s equation
We apply the extended homogeneous balance method to construct the traveling wave solutions for Fisher’s
equation [24,25]. The Fisher’s equation is a nonlinear partial differential equation of second order, of the form
U = Uy, +u(l —w). (21)

Applying the transformation u(x,t) = U({),{ =x — At to Eg. (21) we find V satisfies the following ordinary
differential equation
-U+U*-AU'-U"=0. (22)
Balancing U"" with U? yields |m| = 2.Therefore, we are looking for the solution in the form
U=ay+by+a,w+b(1+w)t+a,w?+b(1+w)? (23)
Substituting Egs. (23) and (4) in Eqg. (22), we get a polynomial equation w. Hence, equating the coefficient of
w’ (i.e., j =0,1,2,..) to zero and solving the obtained system of overdetermined algebraic equation using symbolic
manipulation package MATHEMATICA, results in:

The first set:

1 2 1 4 3 3
a3 =0,P #0,ay = 5 (—12P* + 12kP + 1), b, = E\/§\/—384P +576kP3 — 192k3P + 1,a, = 0,
b, = 6(k? — 2Pk + P2), 1 = —480(kP?b, — P3b,). (24)

The second set:

1

2_
by =0,P # 0,k ="—,a,=—(M?+8kP +1),b; = 0,a, = 6P>, M # 0,

_ —36PM° +432kP?M* — 1728k*P*M? + 211PM? + 2304k>P* — 424kP? — 35P + 70Pa,

35M ’
6
A== (36M° — 432kPM’ + 1728Kk2P2M® — 73M° — 2304k*P*M? + 160kPM® + 70aoM* — 35M
—1152k2P?M + 280kPM — 560kPaoM + 2M + 560k?Pay). (25)

For the first set (24), if M = 0, P = 1 we get the solutions satisfying case | for k > 0. Therefore, the solutions of
Fisher’s equation of the type (21), will be

by+by (Vktan(Vk{)+1)

(%0 = a0 + (VRtan(vV&g)+1)° (26)
_ (VEcot(vVkg)+1)by +b,
U (x,t) = ay + (\/Ecot(\/EZ)+1)2 . (27)
Fork <0,
—V=Rktanh(V=F
ws(nt) = ag + b2+b1(1 ktanh( k()), (28)

(V=Rtanh(v=Fk¢)-1)"

25



MOHAMMAD M. FARES ET AL.

(1—VEcoth(VR?))by+b,

,t) =ay + , 29
Uy (x,8) = ag (VEcoth(VEZ)-1)2 (29)
Now for the solutions satisfying cases Il & 111 & IV, we have the compatibility condition,
pi = ¥
T
(30)
Therefore, substitute for P and k, from Eq. (24) into Eq. (30) and solve for p;. It is found that
Dy =— ‘1\_/52% or “1\;52‘10. (31)
Hence, for case 11, we get the following solutions:
2P(2Pb2+b1(2P—p1(M+2tanh({p1))))
us(x,t) =ao + , 32
5(x 0) 0 (pl(M+2tanh({p1))—2P)2 (32)
t
X
Figure 1. 3D and contour plots of the solution (32) witha, = —2 P =5and k = 5.
and
U () = ag + zp(zp(b1+b2)—(M+2coth(€p1)2)b1p1) (33)
((M+2coth((p1))p1—zp)
In the same manner case |11, results in the solution
4P2%b, (r+cosh({))?
u;(x,t) =ay + Z
(Mr—ZPr+(M—2P)cosh({)+sinh({)+\/rz—l)
2Pbq (r+cosh({)) (34)

B Mr—2Pr+(M—-2P)cosh({)+sinh({)+vr2-1"

with the condition that p; = 1.
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Figure 2. 3D and density plots of the solution (35) with a, = —2, P = 5and k = 5.
For case IV, the solution form is

2P((M+2P+coth({)+csch({))b,+2Pb;)
(M+2P+coth({)+csch(())? ’

ug(x,t) = ag + (35)

with the condition that p; = 1,

2P((—M+2P-2coth({))by+2Pb5)
(M—-2P+2coth({))2 ’

ug(x,t) = ay + (36)

with the condition that p; = 2.

For the second set we are left only with solutions satisfying cases 1l & Il & IV. Since, the main criteria for these
cases to be applicable is the compatibility condition,

2_,2
Pk =""2 37)
From (25), it is found that
p: =1 (38)
Therefore, solutions to equation of the type (21), will be
uo(x,t) = ao + ;pf(M + 2tanh({p1))2 - W’ (39)
and
u;1(x,t) = ag +%(M + 2c0th({p1))2p12 - w, (40)
In the same manner case 11, results in the solution
2 4 M+sinh({)+\/r2—1>
_ 3 sinh()+Vr2-1) 1( r+cosh({)
Uiz (%, 1) = ao + 2 <M + r+cosh({) ) 2P ’ (41)
where p; =1,
For case 1V, the solution form is
u13(x’ t) — %(M + COth(z) + CSCh(Z))Z + a1(M+c0th2(g)+csch({)) +ay, (42)
Wlth pl = 1.
3.2 Example 2. Burgers-Fisher equation
Consider Burgers-Fisher equation [24,25].
Up = Uy + uu, +u(l —u). (43)

Apply the transformation u(x,t) = U({),{ = x — At to Eq. (43) Then it is reduced to the following ordinary
differential equation:
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~U+U?=AU'"+UU - U" =0. (44)
Balancing U"" with UU' yields m=1. Therefore, we are looking for the solution in the form
U=ay+by+a,w+b(1+w)? (45)
substituting Egs. (45) and (4) in Eq. (44), we get a polynomial equation w. Hence, equating the coefficient of w’ (i.e.,

j=0,12,..) to zero and solving the obtained system of overdetermined algebraic equations using the symbolic
manipulation package MATHEMATICA, results in :

M=2P+1k=P+1a =0,P#0,b =,b #0,A=—a,+Pb +2. (46)

For the first set, as in the previous example , we apply the compatibility condition, in using the solutions

satisfying cases Il & 1l & IV.
M?—p?
Pk =——2 (47)

4

Therefore, substitute for P and k, from Eq. (46), into Eq. (47) and solve for p,. It is found that
pp,=1 or p, =-1. (48)

Therefore, the solution to the equation of the type (43), will be

u(x, t) = ag (1 ;), (49)

" 1+ztanh(x-10)
and

u,(x,t) = a, (1 ;), (50)

- 1+2coth(x—At)

Figure 3. 3D and contour plots of the solution (51) with a; = 0.03 P =1andr =
In the same manner, case Il results in the solution

(—r—cosh(()+sinh(()+\/rz—l)ao

t) = 51
Us (x ) r+cosh({)+sinh({)+yr2-1 ( )
with the condition that p; = 1.
For case 1V, the solution form is
u4(x’ t) _ (4P+c0th({)+csch(()+3)a0’ (52)

4P+coth({)+csch({)+1
with p; = 1,

4, Conclusion

In summary, an extended homogeneous balance method with computerized symbolic computation is developed
to deal with nonlinear partial differential equations (PDEs). Traveling wave solutions were formally derived for
Fisher’s equation and Burgers-Fisher equation. This method can be also applied to other nonlinear evolution equations.
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