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ABSTRACT: We introduce a new class of semigroups, that we call BZS - Boolean Zero Square-semigroups. A
semigroup S with a zero element, 0, is said to be a BZS semigroup if, for every x € S, we have x? = x or x? = 0.
We obtain some properties that describe the behaviour of the Green’s equivalence relations R, £, H and D.
Necessary and sufficient conditions for a BZS semigroup to be a band and an inverse semigroup are obtained. A
characterisation of a special type of BZS completely 0-simple semigroup is presented.
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1. Introduction

We shall use standard semigroup notation, that can be found, for example, in [1]. If S is a semigroup, E(S)
represents the set of idempotents of S, and V (x) denotes the set of inverses of an element x in S. We recall that
the natural order <,, on the idempotents of a regular semigroup is defined by

es,f © e=ef=fe

In [2], Farag and Tucci introduced the notion of a Boolean Zero Square (BZS) ring as an associative ring, not
necessarily commutative and not necessarily with identity, such that every non-zero element of R is either idempotent
or nilpotent of index 2, that is,

(VxE€R) x*=x v x2=0
The structure of BZS rings is investigated, in [2] and in [3].
It is possible to find in the literature several papers in Boolean Zero rings, and as a sample we refer to [4] in order to
several constructions in this structure.
Here we present a generalisation of these notions to semigroup theory, starting by introducing the following concept,
that follows naturally from Ring theory.

Definition. A semigroup S, with element zero 0, is said to be a BZS semigroup if, for every element x in S, we have
x?=xorx?=0.

In the ring case, there are more tools available due to the presence of two operations: addition and multiplication. This
fact has, as a consequence, that the majority of the results obtained in [2] and [3] cannot be replicated to the semigroup
case.

One of the results obtained in [2] is that in a BZS ring, the set of nilpotent elements, is an ideal of the ring. This
property does not hold in a general BZS semigroup, as it can easily be seen in Example 2 below. This happens because
the result only mentions the multiplicative operation, although its proof uses the additive operation heavily. We obtain
in Theorem 8 that in a BZS commutative semigroup the set of its nilpotent elements, is an ideal of the semigroup.

In what follows, unless otherwise stated, S will always denote a BZS semigroup. We denote
E = {x € §|x? = x} and N = {x € S|x? = 0}

respectively, the set of idempotent elements and the set of nilpotent elements of S.
Let us present some basic properties that hold in any such semigroup S.
(Vvx€S) x3=x? (D)
Forany x € S, we have two cases to consider:
) x2=x = x-x2=x-x = x3=x2
i) x2=0 = x-x2=x-0 = x3=0 = x3=y2
which proves the result.
(vx€S) x*=x% and x?€E(S) 2)

This follows immediately from (1).

EnN = {0} 3)

In fact, if x € E N N, we have x = x2 = 0, and the result follows.

(vx,y€S) xye€eE\{0} < yxe[E\{0} (4)
Let us, assume that xy € E\{0}, that is, (xy)? = xy, with xy # 0. If yx = 0 then,
yx=0 = x-yx-y=x-0-y
= ()?=0
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which is a contradiction, and therefore we can conclude that yx # 0. Also, if (yx)? = 0 then, using (1), we have
Ox)?=0 = x(x)’y=x-0-y
= (=0
= (xy)?=0
= xy=0
which is also a contradiction. So, (yx)? = yx # 0, which means that, yx € E\{0}.
Similarly, we prove the reverse implication.

(Vvx,y€ES) xyeEN & yx€N (5

If xy € N then, by (3), xy ¢ E\{0} and therefore by (4), yx ¢ E\{0}, that is yx € N. The converse
implication follows similarly.

Now, let us present some examples to illustrate this concept, which show that they can be found in a wide variety of very
well-known classes of semigroups, such as bands, completely 0-simple semigroups and inverse semigroups.
Example 1. Any band, B, with zero is clearly, a BZS semigroup, with E = B and N = {0}.

Example 2. In a context of ordered semigroup theory, Blyth and McFadden presented in [5] a semigroup which has
proved to be very helpful in describing several classes of ordered semigroups. More details of the relevance and properties
of this semigroup can also be found in [6]. It can be defined by N = {u, e, f, a, b} with the following Cayley table:

O D —~d® C

oo c o Cc|c
S T T o cCc|m
T QD = QO —h|—
T T T O |9
O O T T TO|T

It follows directly from the table that Ng is a BZS semigroup, b is its zero element, N = {a, b} and E = {u, e, f, b}. This
semigroup appears in a different context, as an example of a completely 0-simple semigroup that it is not orthodox.
Routine calculations show that it is 0-simple

NS = NSuNS = N58N5 = NSfNS = NSaNS

and, for example, f is a primitive idempotent. Since ef # fe, we can state that N is not an orthodox semigroup.

Example 3. Consider the completely 0-simple semigroup S = (I x G x A) U {0} with operation

) ’A‘ ’b’ = .
(t,a, D), b, 1) { 0 if pyy =0

(i,a,A)0 =0 =0(i,a,1) =00
where G° = G U {0} is a zero group, with G = (x) an order two cyclic group, I, A are non-empty index sets and P = [py;]
is a A x I sandwich matrix with entries in G°, and all the non-zero entries of P are equal to x. Recall that every row and

column of P has at least a non-zero entry.

Consider T = {(i,x, 1) € S} U {0} a subset of S, and let (i,x, 1), (j,x, ) € T. We have the following possibilities for the
element py;:

If pa; # 0, then (i, x, D, x, 1) = (i, xpzjx, p) = (i, xxx, 1) = (i, x,u) €T

Ifps; = 0, then (i, x, D, x,u) =0 €T
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and we can say that T is a semigroup, with the induced semigroup operation. Also, for any (i,x,A) € T, we have that
(i,x, 1) if py; #0
(i,x,1)? =
0 if Pri = 0

Therefore, T is a BZS semigroup.

Example 4. Consider the following set of 2 x 2 real matrices

s-wasssarutao-( 90 30 00 6 S0 0 )

It is well known that S with the usual matrix multiplication is an inverse semigroup (see, for example [7, Section 7.6,
Exercise 1]). S is not a BZS semigroup, since A2 = AA =1+ A,0.

But if we consider the subset
T = {1' EII' E12' E21' E22' 0}:

it gives us the following Cayley table

I E1q Ei, Ez Ez, 0

I I E1q Ei, Ez Ez, 0

Ey | B B Ep 0 0 0
Ey, | B2 O 0 E, Ep O
By | Ean B Ep 0 0 0
Eyy | Ea 0 0 Ep Eyp, 0
0 0 0 0 0 0 0

It follows immediately from the table that T is a subsemigroup of S which is a BZS inverse semigroup, with
E = {1, Ell’ E22,0} and N = {E121E21' 0}

2. Green’s Relations

Let us now obtain some basic properties on the Green’s relations R, £, H, J and D on a BZS semigroup S.
Ry =Ly =Hy =Dy =], = {0} (6)

For any x € R,, we have that x = x-1 € xS! = 0S® = {0}, which immediately implies that
R, = {0}. The other equalities follow similarly.

Forx,y € Eorx,y EN 7
xRy = xyRyx

In fact, if x, y € E, then, since R is a left congruence [1, Proposition 2.1.2],
{xx.‘ny N {x.‘ny

xR
Y YXRyy yXRy

xXyRyx
and, if x,y € N then
=E ¥W=0=yx = xyRyx

Forx,y € Eorx,y € N ®
xLy = xyLlyx

This follows similarly as in (7).
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Note that properties (7) and (8) do not hold if one element is in E and the other is in N. To see this, consider N in Example
2, where the R classes of N5 are R, = {u, f}, R, = {e,a} and R, = {b}, while its L classes are L,, = {u, e}, Ly = {f,a} and
Ly, = {b}. From property (7) we have that e € E, a € N, eRa but ea = a which is not R related with ae = b. Similarly, for
property (8).

Theorem 1. Let S be a BZS semigroup.

(1) If a € E, then R, N E is a subsemigroup of S, which is a right zero semigroup. In particular, if R, € E then R is a right
zero semigroup.

(2) If a € N, then R, U {0} is a subsemigroup of S.

Proof. (1): Itis clear that R, N E is non-empty, since a € R, N E. Forany b,c € R, N E, we have,
bRa and cRa = bRc = b=bbRbc = bc€R,=R,
which means that, R, is a subsemigroup of S. Since b and c are idempotents, we have by [1, Proposition 2.3.3], that bc = ¢
and therefore R, is a right zero semigroup.
(2): Itis clear that R, = {0} is a subsemigroup of S. So, it is enough to consider a € N\{0}, that is, a # 0 and a? = 0. For
b,c € R, there exist x,y,z,w € S such that
a=bx, b=ay, c=az and a=cw

If, on one hand b? = 0, then

a=bx = ba=bbx)=b*’x=0-x=0 = ba=0
and
bc=b(az) =(ba)z=0-z=0

If, on the other hand b2 = b, then by [1, Proposition 2.3.3], bc = ¢ € R,,.

Therefore, R, U {0} is a subsemigroup of S.

Note that in general, an R class, R,, is not a subsemigroup of S. In fact, if we consider the semigroup N5 of Example 2, and
its R class, R, = {e,a}, where e € E and a ¢ E, then we have that ae = b ¢ R,, which means that, R, is not a
subsemigroup of Ns.

Theorem 2. Let S be a BZS semigroup.

(1) If a € E, then L, N E is a subsemigroup of S, which is a left zero semigroup. In particular, if L, < E then, L, is a right
Zero semigroup.

(2) If a € N then, L, U {0} is a subsemigroup of S.

Proof. Similar to the proof of Theorem 1.

Like in the note to Theorem 2, we can use Example 2 to illustrate that an £ class of a BZS semigroup is not, in general, a
subsemigroup of S.

Theorem 3. Let S be a BZS semigroup.

(1) If a € E, then H, is a group with only one element.

(2) If a € S\E, then H, € S\E, (H,)? = {0} and H, U {0} is a subsemigroup of S.
(3) If aD class of S contains an idempotent, all its H classes are singleton.

Proof. (1): In fact, by [1, Corollary 2.2.6], H,, is a subgroup of S. We need to prove that H, has a unique element. For a = 0
this is obvious, by (6). Let us now assume that a € E\{0}, and consider b € H,. We have that

bRa bbRba b?Rba
biHa = {bLa = {baLaa = { baLla
If b2 = 0 then
0Rba ba=0 o _
bHa = {baLa {aeLba = a€lyy=L={0} = a=0

which is a contradiction. Therefore, we can conclude that b2 = b, and b is an idempotent. Using again [1, Corollary 2.2.6],
we conclude that b = a, and H, is a singleton subgroup of S.
(2): Let a € S\E, and consider y € H,, which cannot be equal to 0, by (6). Then,
yRa yyRya {yszya
yHe = {yLa = {yaﬁaa = yal0
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and therefore H, < S\E.
Again, with a € S\E we have that

bHa — {bRa {abRaa {abRO N {abio

bLa baLlaa baLl0

Therefore, for b, c € H,, we can say that
ab=0, ba=0, ac=0 and ca=0
Since bH ¢, we have that bRc, and
bRcRa = cbRccRca=0 = c¢chR0 = chb=0

from which, we conclude that (H,)? = {0} and that H, U {0} is a subsemigroup of S.
(3): This follows by [1, Lemma 2.2.3] and (1).

Note, that in Theorem 3(2) we verified that, for every a € N, the H class H, is a subset of N. The same property does
not hold for the R and £ classes. In fact, the semigroup Ns of Example 2 is such that a € N, but R, = {e,a} ¢ N, as
well as L, = {f,a} ¢ N.

Theorem 4. Let S be a BZS semigroup.
(1) If a € S\{0} and D, < E, then D, is a subsemigroup of S.
(2) If a € S\E, then D, U {0} is a subsemigroup of S.

Proof. (1): For any a € S\{0}, we have by (6), that D, # {0}. The fact that D, € E therefore implies that
D, S E\{0}.
Considering any b, c € D, there exist d € S, such that bLdRc. By [1, Propositions 2.1.2 and 2.3.3], we have that

dRc = bdRbc = bRbc = bc€R,CSD,

Thus, D, is a subsemigroup of S.
(2) Consider any a € S\E, that is, a = 0 and a? = 0. For any b,c € D, there exist d € S, such that bLdRc, which
means, in particular, that b = xd and ¢ = dy for some x,y € S?.
Also, dRc implies b = xdRxc and therefore xc € R,
Then,
bc = (xd)(dy) = x(dd)y

If d? = d, then bc = xd?y = xdy = xc € R, € D,.
If d2 = 0, then bc = 0.
Thus, D, U {0} is a subsemigroup of S.

3. Special classes of BZS semigroups

We now devote our attention to obtaining necessary and sufficient conditions for a BZS semigroup S to be a band
or an inverse semigroup. A characterisation of some BZS completely 0-simple is presented. Also, the commutativity
property will be approached.

Theorem 5. Let S be a BZS semigroup. The following statements are equivalent:
(1) Sisaband;
2) (vx € S) x3 =x.

Proof. (1) = (2): The definition of a band tells us that x2 = x for all x € S. Then,
x3=x?x=xx=x
and the result follows.

(2) = (1): Take an element x € S. Since S is BZS, x2 = x or x2 = 0. If x? = x, there is nothing to prove. If x2 = 0,
then x = x3 = x2x = 0 x = 0 which, immediately implies that x? = x, for every element of S, that is, S is a band.

In the following Theorem and its proof, we use the identification provided from Rees Theorem [1, Theorem 3.2.3], for

a completely 0-simple semigroup S. Such S is isomorphic to
(I x G x A) u {0},
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where G is a group, I and A are non-empty index sets, and P = [py;] is a A x I sandwich matrix with entries in the zero group
G° = G U {0}. Also, every row and column of P has at least a non-zero entry. The semigroup operation is defined by

) ’A ’bl = .
@, a, ), b,w) { 0 if pay = 0

Theorem 6. Let S be a BZS semigroup. The following statements are equivalent:
(1) Sis a completely 0-simple semigroup with no zero entries in the sandwich matrix;
(2) Sisarectangular 0-band.

Proof. (1) = (2): Let S be a completely 0-simple semigroup. Considering an arbitrary element x in G, for any 1 € A and
i € I, we have that p;; # 0. Then,

@, %02 =({,x,),x 1) = (@, xpyx, 1) # 0,

which therefore implies, since S is a BZS semigroup, that (i, x, 1)? = (i,x, 1). Thus,

GLx,DAx,A) =>0x21) < ({xpux,A)=(>0x21)
&S XpuxX =x

— 41
= Pri = X

In particular, if we replace x by the identity element of the group 1., we obtain p,; = 1, and therefore x~* = 1, which, is
equivalent to x = 1,. So, G is the trivial group.
Then, S is isomorphic to {(i, 15,1):i €  and A € A} U {0} , whose elements verify

(i’ 1G! l)(]! 1G’.u) = (ll 1G! ,u) and (ll 161/1) ‘0=0=0- (ll 1GI/1)

That is, S is a rectangular 0-band.
(2) = (1): If Sis arectangular 0-band, then
(Va€eS)vbeS\{0}) a’=a and aba=a

Then, forany a,b € S and b € S\{0}, we have that, a = aba € SbS which implies that S < ShS.
Since, the reverse inclusion is always true, we can conclude that S is a 0-simple semigroup.

Also, if in S\{0}, a <, b, then ab = ba = a. We have that

= a=b»

ab =ba = {aba = bhaa {a = ba

bab = bba b = ba

which, means that all non-zero idempotents are primitive, and therefore S is completely 0-simple.
Also, if a, b € S\{0}, then if ab = 0 then aba = 0 # a, which is a contradiction. So, all the entries of the sandwich matrix are
not zero.

It follows from the previous Theorem and its proof that for a BZS semigroup to be completely 0-simple where the sandwich
matrix has no zero entries, it is necessary to have a singular group in the middle component of the Rees representation.

In fact, we can say that a BZS semigroup is completely 0-simple where the sandwich matrix has no zero entries if, and only if,
it is a completely simple semigroup with a zero adjoined.

Theorem 7. Let S be a BZS semigroup. S is an inverse semigroup if, and only if, the following conditions hold:
(1) Sisregular;
(2) (vx € S) x'x%x" = x2, for any inverse x' of x.

Proof. Let S be an inverse semigroup. Any element x in S has a unique inverse denoted by x~*. By [1, Theorem 5.1.1], an
inverse semigroup is a regular one, where the idempotents commute. So, by (2), x? is an idempotent that, therefore,
commutes with xx~* and with x~*x. Thus,

4 __ .2 -1.,.4 _ .—1.2 — — — —
xF=x" = xTxt=x"x" = xx-x?x=x"%? = x%-x'x-x=x"1x?

= x(x')x=x"1x2 = B=x1x2 = x3x1=x"1x2x1

= x?-xxP=x"1x%x"1 = xx1-x%=x"1x2x = x%=x"1x%x"1
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Conversely let us, assume that (1) and (2) hold. Let e be an idempotent of S and e’ any inverse of e. By (2), we have
that e'e?e’ = e?, that is, e’ = e. Thus, we can conclude that each idempotent in S has a unique inverse. Now,
considering an element x in S and x’, x"" inverses of x, we have that xx’ and xx'* are idempotents and inverses of each
other, aswell as x'x and x"'x. Thus, xx" = xx"" and x'x = x''x and we can deduce that

xl — xl(xxl) — xl(xxll) — (xlx)xll — (xlfx)xll — x”

The result follows, since by [1, Theorem 5.1.1], a regular semigroup where each element has a unique inverse is an
inverse semigroup.

Theorem 8. Let S be a BZS commutative semigroup. Then,
(1) E is a subsemigroup of S;

(2) Nis an ideal of S;

(3) If Sis inverse then x3 = x, for every x € S.

Proof. Consider any elements x,y € S.
(1): If, on one hand, both belong to E, we have x? = x and y? = vy, and therefore

(xy)* = (xy)(xy) = x(yx)y = x(xy)y = (xx)(yy) = x*y* = xy

which means that xy € E , and therefore E is a subsemigroup of S.
(2): If, on the other hand, for example x € N, we have that

()? = ) (xy) = x(yx)y = x(xy)y = (xx)(yy) =x?-y> =0-y? =0
Thus, xy € N and we can conclude that N is an ideal of S.

(3): If Sis an inverse commutative semigroup, any x € S has a unique inverse, x~1, and we have by Theorem 7 (2), that
x=xxtex"lx = x(x taxx") = x-x? = x3
We have seen previously that x® = x for all x € S holds in any BZS semigroup that it is also a band, or a commutative
inverse semigroup. It also holds for a BZS completely 0-simple semigroup, where the sandwich matrix has no zero
entries. However, this property does not hold for all the BZS semigroups. To see this, let us consider
T ={l,Ey1, Ex, E21, E3p, 0}

of Example 4, which is an inverse BZS semigroup. Note that we have

=1, E3 = E;4, E3, = E,,, 0% =0,
E132=0¢E12, E231:O¢E21

from which, we can deduce that the mentioned property does not hold in all the BZS semigroups.
4. Conclusion

In this paper, we introduce a new class of ordered semigroups: BZS - Boolean Zero Square semigroups. Several
basic properties on Green’s relations are obtained. Necessary and sufficient conditions for a BZS semigroup to be a band
and to be an inverse semigroup are obtained. A characterisation of a special type of BZS completely 0-simple semigroup
is presented.

Conflict of interest

The author declares no conflict of interest.

Acknowledgment

I thank Sultan Qabbos University for providing facilities and to the referees for their comments that improved the
qulity of this paper.

38



BOOLEAN ZERO SQUARE (BZS) SEMIGROUPS

References

1. John, M. Howie, Fundamentals of Semigroup Theory, L.M.S. Monographs, 12, Oxford University Press, Oxford,

1995.

Farag, M. and Tucci, R. BZS Rings, Palestine Journal of Mathematics 2019, 8(2), 8-14.doi:10.7151/dmgaa.1243.

Farag, M. BZS Rings I1, 2020 (preprint).

4. Bhavanari, S., Lungisile, G. and Dasari, N. Ideals and direct product of zero square rings, East Asian Mathematics
Journal 24, 2008, 4, 377-387.

5. Blyth, T.S. and McFadden, R. Naturally ordered regular semigroups with a greatest idempotent, Proceedings of

the Royal Society of Edinburgh, 91A, 1981, 107-122. doi:10.1017/S0308210500012671.

Blyth, T.S. Lattices and Ordered Algebraic Structures, (Springer 2005). doi:10.1007/b139095.

7. Clifford, A.H. and Preston, G.B. The Algebraic Theory of Semigroups, volume Il, A.M.S. Mathematical Surveys,
1967. doi: 10.1090/surv/007.2.

w

o

Received 25 June 2020
Accepted 18 January 2021

39



