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ABSTRACT: The steady free convective flow of a viscous incompressible and electrically conducting fluid in a 

two-dimensional cavity in the presence of a magnetic field applied normal to the plane of the cavity is 

investigated. The side vertical walls of the cavity are heated differentially while the horizontal walls are assumed 

to be insulated. The governing equations are re-formulated in terms of vorticity and stream function. The resulting 

boundary value problem is solved numerically using an alternating direction implicit (ADI) method. A number of 

plots illustrating the influence of Hartmann number and Rayleigh number on the streamlines and isotherms as well 

as the velocity and temperature profiles are shown. Furthermore, results for the average Nusselt number and the 

maximum absolute stream function have been obtained, and these are compared with the corresponding results in 

the literature when the magnetic field is applied along the cavity in the horizontal direction.  
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       على الحمل الحراري الحر فً تجوٌف مستطٍل العمودي مغناطٍسًالمجال التأثٍر 

 انانذ كومار واشوك سٍنج وبالاث شانذران و نٍرمال ساشٍتً

 حدٕٚف ثُائٙ الأبعاد ٔٔخٕد  ٙحى دساست حذفق انحًم انحشاس٘ انحش انثابج بانُسبت نهًٕائع انهزخت غٛش انقابهت نهضغظ ٔقابهت نخٕصٛم انكٓشباء ف : ملخص:

، بًُٛا ٚفخشض أٌ اندذساٌ الأفقٛت ُٕعحسخٍٛ اندذساٌ عًٕدٚت اندٕاَب نهخدٕٚف بشكم يخ. حى انعادٖ٘ انخدٕٚف حقم يغُاطٛسٙ حى حطبٛقّ عهٗ يسخٕ

ٔحم انًعادلاث انُاحدت بششٔط حذٚت عذدٚا باسخخذاو طشٚقت  حٛاس. دانتعادة صٛاغت انًعادلاث انخٙ ححكى ْزا انًُٕرج فٙ صٕسة دٔايت ٔإيعزٔنت. ٔحى 

ADI ًُٛإنٗ رنك، فقذ  بالإضافتخٛاس ٔعهٗ دسخت انحشاسة. شكال انًُحُٛاث نخٕضح حأثٛش عذد ْاسحًاٌ ٔعذد سٚهٛت عهٗ سشعت انأ. ٔعشض عذد يٍ تانض

عُذ حطبٛق يدال يغُاطٛسٙ عهٗ طٕل  ٔحى يقاسَخٓا يع َخائح يُشٕسة ٔانحذ الأقصٗ انشايم نذانت اندشٚاٌ، انشقًَٙسهج  انحصٕل عهٗ َخائح نًعذل حى

 حدٕٚف فٙ الاحداِ الأفقٙ.

 

 

  .تايخٛاس، انذٔانانحًم انحشاس٘ انحش، يدال يغُاطٛسٙ، حذفق فٙ خٕف، دانت  :كلمات مفتاحٍة

1. Introduction 

he theoretical and experimental studies of laminar free convective flows in channels and enclosures have a number 

of applications, for instance in the cooling of reactors and electronic equipment, crystal growth in liquids, storage 

systems and solar technology, etc. Batchelor [1] initiated investigations on natural convection in an enclosure heated 

and cooled from side walls. He concluded that the flow is determined by three key dimensionless parameters, namely, 

the Prandtl number, the Rayleigh number and the aspect ratio of the cavity. Following Batchelor's work, a number of 

researchers carried out experimental and numerical investigations related to natural convection in vertical enclosures. 

Eckert and Carlson [2] and Elder [3] experimentally studied natural convection in a rectangular cavity across which a 

temperature differential occurred. Elder [4] subsequently obtained numerical solutions of steady free convective flow 

in a vertical slot and compared the numerical results with the experimental findings [2,3]. Gill [5] presented 

approximate solutions of equations governing natural convection in a rectangular cavity for the case of large values of 

Prandtl number. He found his results in satisfactory agreement with the experimental results of Elder [3]. Wilkes and 

Churchill [6] and later de Vahl Davis [7] introduced a numerical computation model to discuss free convection in a 

rectangular cavity. Kimura and Bejan [8] discussed the free convective flow in a rectangular cavity assuming uniform 
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heat influx from one side of the cavity. In this work, the importance of heat flux wall thermal condition was highlighted 

and described in detail. Numerical and theoretical investigations of the transient natural convection in a 2-dimensional 

rectangular enclosure were carried out by Hall et al. [9]. These authors assumed one of the side walls to be heated 

suddenly while keeping the remaining three walls insulated. Some other aspects of convection in electrically non-

conducting fluids in vertical channels and enclosures-mixed convection, porous media flow, stability, anisotropy - were 

discussed by Straughan [10], Hill and Straughan [11], Barletta et al. [12], Oztop et al. [13], and Tiwari et al. [14]. A 

detailed exposition of stability and nonlinear convection is also available in the research monograph of Straughan [15]. 

In the above studies, the flow features in the cavities were reported in the absence of a magnetic field. Flows of 

electrically conducting fluids subject to the influence of an externally applied magnetic field have been analyzed in the 

literature extensively due to their applications, for instance, in the manufacturing industry. This has led to a number of 

researchers carrying out investigations on the hydromagnetic free convective flows taking place inside rectangular 

enclosures or in vertical channels, albeit with some simplifying assumptions. Oreper and Szekely [16] carried out a 

numerical investigation for transient flow in a rectangular cavity in the presence of an imposed magnetic field and 

noted that the magnetic field suppresses the natural convection. Garandet et al. [17] carried out an analytical study for 

hydromagnetic free convection in a rectangular cavity. Rudraiah et al. [18] considered the effect of a transverse 

magnetic field while assuming the vertical walls of the rectangular cavity to be isothermal and horizontal walls to be 

insulated. A similar study to that in [18] was reported by Alchaar et al. [19]. Kanafer and Chamkha [20] investigated 

the effect of heat generation on hydromagnetic natural convection from an inclined porous square enclosure.  

Pirmohammadi et al. [21] have dealt with the effect of an applied magnetic field on a buoyancy-driven flow in a 

differentially heated square cavity. These authors have obtained solutions of the flow problem for wide-ranging values 

of Rayleigh and Hartmann numbers assuming the applied magnetic field to be along the plane of the flow. The 

transient nature of such a flow has heen discussed by these authors in a subsequent work [22]. In order to analyse the 

effect of the inclination of a rectangular vertical cavity on the buoyancy driven flows of electrically conducting fluids 

in the presence of applied magnetic field, a number of researchers have carried out numerical studies [23-26]. Another 

aspect of magneto-free convective flow in a partitioned enclosure has been dealt with by Pirmohammadi and Ghassani 

[27]. They have shown that the partition of an enclosure can cause the flow to separate and then form vortices inside 

the cavity. In a subsequent work, Pirmohammadi et al. [28] have extended some of their previous works on 

hydromagnetic convection in a rectangular enclosure to include the temperature dependent variations of thermal 

conductivity, specific heat capacity, fluid viscosity and electrical conductivity. 

In the present work, we analyze the free convective flow of an electrically conducting fluid in a rectangular 

vertical cavity under the influence of a magnetic field applied normal to the plane of the cavity. It is worth mentioning 

here that in most of the experimental or theoretical two-dimensional natural convection studies involving a magnetic 

field, the magnetic field has been assumed to be applied in the plane of  the flow-either perpendicular to or along the 

direction of gravity. Thus, the flow configuration considered herein results in the magnetic coupling of the momentum 

equations, necessitating the consideration of both the horizontal and vertical components of the velocity. It is assumed 

that the magnetic Reynolds number is small. The governing hydromagnetic equations, under Boussinesq 

approximation, are solved numerically by using a computationally stable ADI method. The effects of the transport 

parameters on the streamlines, isotherms, and also the velocity and temperature are analyzed. The results of the present 

study are compared with those of Pirmohammadi et al. [21], and have enabled us to highlight the distinguishing effect 

of the direction of application of the magnetic field. The results reported here have particular relevance to applications 

involving control of convection. 

It may be mentioned here that in [21], the authors used a control-volume based finite volume method to solve the 

field equations directly. However, in our case, we have used a vorticity-stream function formulation of the governing 

equations which, in turn, has been solved using an appropriate ADI method, as explained above. 

2. Mathematical Formulation 

Consider a steady free-convective flow of a viscous incompressible and electrically conducting fluid in a 

rectangular cavity of length L and width .H The 
'x ­  axis is taken along the lower horizontal wall and

'y ­
 
axis 

transverse to it in the plane of the cavity, having origin at the lower end of the left wall as shown in Figure 1. A 

constant magnetic field of magnitude 0B  is applied normal to the cavity in the 'z ­  direction. As stated earlier, the flow 

is at small magnetic Reynolds number so that the induced magnetic field can be neglected. The top and bottom walls of 

the cavity are thermally insulated while the vertical left and right walls are maintained at constant but different 

temperatures 
'

hT  and ,'

cT respectively. Furthermore, the viscous and Ohmic dissipation terms are assumed to be 

negligible. 
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 Figure 1. Physical configuration. 

  
Under the Boussinesq approximation, the governing equations - continuity, momentum and energy - in 

dimensional form, can be written as  
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where 
'u and 

'v are the velocity components in the 
'x and 

'y directions, respectively, 
'p the pressure, 'T the 

temperature,  the kinematic viscosity,  the thermal diffusivity,  the electrical conductivity and  is the coefficient 

of volumetric expansion. 

For the flow model considered, the boundary conditions for the velocity and temperature fields are given by  

                                                
= = 0 for 0 , 0 ,' ' ' 'u v x L y H  

                                                
= at = 0, = at = ,' ' ' ' ' '

h cT T x T T x L             (5) 

                                               

= 0 at = 0 and = .
'

' '

'

T
y y H

y




 

 In order to recast the momentum equations (2) and (3) in terms of vorticity 
' and stream function ,' we introduce  

 = , ( , ) = , .
' ' ' '

' ' '

' ' ' '
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u v

x y y x
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 Introducing the nondimensional variables  
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 the quantities in (6) take the dimensionless forms  

                                            = , ( , ) = ,
v u

u v
x y y x
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 while (2)-(4) can be expressed as  
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In (9)-(11), we have introduced a number of well-known nondimensional parameters, namely, the Rayleigh number 

(Ra), Prandtl number (Pr) and Hartmann number (Ha). These are defined as  

                                
3Ra = ( ) / ( ), Pr = / ,' '

h cg T T L    2 2 2

0Ha = / ( ).B L   (12) 

In view of (7), the set of boundary conditions (5) can be shown to transform to  

 = 0 on = 0,1; = 0, = Arx y y  (13) 
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where the aspect ratio Ar is defined as Ar = / .H L  

3.  Numerical Procedure 

The transport equations (9)-(11) are highly nonlinear, and their solutions, subject to the boundary conditions 

(13)-(17), are obtained numerically. To facilitate this, the partial differential equations are first transformed into the 

parabolic form by adding false transient terms [29]. The solutions of the transformed equations are obtained by 

employing a uniform grid discretization and then solving the resulting finite difference equations by a well-known 

alternating direction implicit (ADI) method [30]. Finally, the system of linear algebraic equations, expressed 

tridiagonally, has been solved. 

In the computational procedure, we have taken the square grid, 101 101 , in order to obtain accurate results. In 

each iteration process, firstly the temperature field is obtained by using the values of the temperature and velocity 

components obtained in the previous iteration. These values are then used to compute the vorticity and the stream 

function, respectively. Finally, the velocity components are obtained by using the newly obtained values of the stream 

function. The solution procedure from the initial state is iterated until a quasi-steady state is approached by satisfying 

the convergence criterion  
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In the above expression  may stand for the temperature, vorticity or stream function. The superscripts denote the 

values of the dependent variables after the n th and ( 1)n th iterations, respectively, whereas the subscripts i and j  

indicate grid location in the xy­ plane. In order to validate the accuracy of our computational procedure, we have 

compared our results in the absence of a magnetic field with the corresponding results reported by Pirmohammadi et 

al. [21], and found good agreement. 

In engineering applications, one of the important characteristics of the flow is the rate of heat transfer across the 

cavity, and this is estimated by computing the values of the Nusselt number, Nu. The local Nusselt number on the left 

wall of the cavity is defined by  

 
=

Nu =
x

T

x

 
 
 



 0

 (19) 

The overall heat transfer rate across the cavity, expressed by the average Nusselt number at the left vertical wall, is  

 

 
A

av
0

Nu Nu d
r
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4.  Results and Discussion 

In this section, we present numerical results for two-dimensional hydromagnetic natural convection in an 

electrically conducting fluid inside a cavity caused by differentially heated vertical walls in the presence of a magnetic 

field applied normal to the plane of the cavity. It may be observed that the dimensionless equations which govern the 

behavior of the considered model contain four physical parameters, namely Ra, Ha, Pr  and Ar. The presence of all 

four physical parameters in a model makes the computation and the subsequent analysis a tedious job. As we are 
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mainly interested in examining the effects of the magnetic field and buoyancy force on the convective flow, we have 

carried out computations for the Rayleigh number Ra ranging from 
410  to 

610  and the Hartmann number Ha  from 0 

to 100, for specific values of the Prandtl number Pr = 0.733  and aspect ratio Ar =1. 

 

 

 

Figure 2. Streamlines and isotherms.  
4R =10a , Ha = 0, 10, 50, 100 (a-d).  

 
Figure 2 shows the effect of an applied magnetic field on the streamlines and isotherms as Ha increases from 0 to 

100, with Ra fixed at 
410 . In the absence of the applied magnetic field [Figure 2a], the flow shows a typical circulating 

pattern with the centre of circulation being in the middle of the cavity. The isotherms, particularly in the central 

portion, i.e., away from the boundaries, exhibit appreciable effects of the convection currents. However, with a 

moderate increase in the magnitude of the magnetic field [Figure 2b], the streamlines begin to distort from their 

circular shape tending to be slightly elliptic. However, the plots of streamlines and isotherms in Figure 2 seem to 

suggest that at this chosen level of buoyancy (Ra =10
4
) , isotherms are more affected in comparison to streamlines as 

we transit from a weak magnetic field domain to a relatively stronger magnetic field zone. In particular, at Ha = 50  or 

100, the flow is dominated by conduction, as clearly evidenced from the isotherms being almost parallel to the vertical 

walls. In other words, the temperature stratification, apparently visible in the case of a weak magnetic field, is no 

longer there, having been significantly suppressed by the applied magnetic field corresponding to higher values of Ha. 

This last observation is broadly similar to those reported by Rudraiah et al. [18] and Pirmohammadi et al. [21] 

although these studies considered the applied magnetic field to be along the cavity, parallel and transverse to the 

direction of gravity, respectively. However, the typical feature related to the elongation of the innermost streamline and 

leading to the formation of two secondary loops (see [18] and [21]), at higher values of Ha, is not observed in our 

work. Apparently, this difference can be attributed to the direction of the applied magnetic field being normal to the 

plane of the cavity in our present work as opposed to the field being along the cavity, as stated above. 
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 Figure 3. Streamlines and isotherms. 
6R =10a , Ha = 0, 10, 50, 100 (a-d). 

  
The contours of isotherms and streamlines, for a relatively high Rayleigh number (Ra = 10

6
), are shown for the 

same set of values of Ha in Figure 3. For a weak magnetic field, the presence of thermal boundary layers along the 

vertical side walls is quite conspicuous. Furthermore, there is thermal stratification in the vertical direction indicating 

the predominance of convection currents in the heat transfer process. As regards streamlines, the circular pattern 

observed earlier for 
4Ra =10  is quite distorted [see Figure 3a or 3b]. Also, there is a strong upward or downward flow 

near the isothermal walls. For high values of Ha (50 or 100), the streamlines appear to gradually head towards 

circulating pattern through elongated ellipses (see Figure 3c or 3d]. Interestingly, the temperature stratification, 

referred to earlier for the weak magnetic field case, seems to lose its intensity in the central core region of the cavity 

along with the disappearance of thermal boundary layers near the side vertical walls. 
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                                                     Figure 4. Velocity profiles u  at = 0.5x (Ra = 10
4
). 

 
Figure 5. Velocity profiles u  at = 0.5x (Ra = 10

6
). 

                
                                                      Figure 6. Velocity profiles v  at = 0.5x (Ra = 10

4
). 
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Figure 7. Velocity profiles v  at = 0.5x (Ra = 10
6
). 

  
Since the magnetic field is applied normal to the plane of the cavity, we need to discuss the variation of both 

components of velocity, u  and .v  In Figures 4 and 5, we show how the x- component of velocity, u , changes with the 

vertical coordinate y  at the cross-section = 0.5,x  for 
4Ra =10  and 

610 , respectively. These sketches show that u  is 

oscillatory in nature, with values peaking near the lower and upper adiabatic walls. The seemingly suppressive effect of 

the applied magnetic field on this component is quite visible for 
4Ra =10  (Figure 4). However, for larger values of Ra      

(10
6
), we notice a mixed response of the magnetic field. 

In order to assess the combined effect of buoyancy and the magnetic forces on the velocity, we show profiles of 

the y- component of velocity v . The curves are shown at a vertical cross-section = 0.5x  for 
4Ra =10  (Figure 6) and 

6Ra =10  (Figure 7). As observed in a similar study [18], the effect of the increase of magnetic field is to suppress the 

magnitude of the velocity. As buoyancy force increases from 
4Ra =10  to 

6Ra =10 , we observe that there is an 

appreciable variation in the velocity near the adiabatic walls. However, in the central region, the fluid is nearly 

stagnated for the higher Rayleigh number. 

From the profiles of u  and v , we notice that the magnitude of the vertical component of the velocity is relatively 

much more influenced by the magnetic field of the type considered here - normal to the plane of the cavity. 

Furthermore, the flow suppression due to the magnetic field, usually observed in hydromagnetic convective studies, is 

clearly visible in the velocity component .v This, in turn, shows that the convective heat transfer is reduced in the 

region away from the adiabatic boundaries. 

The non-dimensional temperature profiles at the vertical cross-section = 0.5x  are shown in Figure 8 for the 

same set of values of Ra and Ha, as above. Interestingly, at higher values of the Hartmann number (Ha = 50 or 100), 

the temperature varies rather linearly with y  when 
4Ra =10 , although showing little variation with the magnetic field. 

However, for a weak magnetic field, the temperature profiles oscillate about this linear profile, showing opposite 

behaviour before and after the mid-point = 0.5.y  As the buoyancy force becomes larger (Ra = 10
6
), we observe 

broadly similar features, although in this case the effects of a weak as well as a strong magnetic field are quite clearly 

manifested. 
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                                             Figure 8. Temperature profiles T  at = 0.5x  for
4R = 10a  and

6R = 10 .a
 

 

In Figure 9, we show the effect of the applied magnetic field on the local Nusselt number Nu. The curves are self-

explanatory. In particular, we note that when the Rayleigh number is low and the Hartmann number high, Nu is nearly 

constant. 

 

 

Figure 9. Local Nusselt number at 0x  for
4R = 10a  and 5R =10 .a  

 

In Table 1, we show the computed values of two parameters of practical importance in applications - the average 

Nusselt number on the heated wall, aN ,vu  and the maximum absolute value of the stream function, m| | ax - for a range 

of values of the Rayleigh and the Hartmann numbers. The practical utility of m| | ax  stems from the fact that it 

quantifies the intensity of the natural convection in the flow domain. We see from the tabulated values that for a fixed 

Ha, the effect of increase in Ra is to increase aN vu  as well as m| | ax . On the other hand, when Ra is fixed, m| | ax  and 

aN vu  decrease with Ha. Moreover, for  relatively small values of Ra,  
4 510 R 10 ,a   aN 1vu    with increasing Ha. 
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Table 1. Numerical values of 
m| | ax  and 

aN vu .   

 

   Present work Previous work [21] 

      

Ra   Ha  
m| | ax    

aN vu    
m| | ax    

aN vu  

 
410    0   5.0552   2.2879   5.05   2.29 

  10  2.9159   1.7091   3.35   1.97 

  50  0.2696   1.0105   0.47   1.06 

 100  0.0707   1.0008   0.12   1.02 
510    0   9.6884   4.5761   9.75   4.62 

  10  8.1514   4.1950   –   –  

  50  2.2038   1.5975   –   –  

 100  0.6901   1.0710   1.14   1.37 
610    0   16.961   8.9214   17.0   8.90 

  10  16.318   8.7685   –   –  

  50  9.0776   5.6404   10.51  6.39 

 100  4.4136   2.8784   –   –  

 

 

This indicates that the heat transfer at high Hartmann number is dominated by conduction which further implies, inter 

alia, the absence of convection currents in the cavity. On the other hand, for larger values of buoyancy force and weak 

magnetic field, 
m| | ax  attains high values showing the dominance of heat transfer by the convection mode. Finally, in 

order to assess the effect of the nature of application of the magnetic field - normal to the plane of the cavity vis-à-vis 

along the plane of the cavity - we have compared our results with that of Pirmohammadi et al. [21]. The broader 

conclusions drawn above in our analysis are qualitatively very similar to those reported in [21]. As regards the 

comparative effect due to different modes of application of the magnetic field, we observe that for given Ra and Ha, 

the values of 
m| | ax  and 

aN vu  are lower in our work as compared to the corresponding values in [21]. This important 

result of our study shows that the suppression of natural convection in the cavity is enhanced when the magnetic field 

is applied perpendicular to the cavity in contrast to when it is applied along the cavity in the horizontal direction. 
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