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ABSTRACT: The Hartley transform, as in the case of the Fourier transform, is not suitably applicable to non-

stationary representations of signals whose statistical properties change as a function of time. Hence, different versions 

of 2-D short time Hartley transforms (STHT) are given in comparison with the short time Fourier transform (STFT). 

Although the two different versions of STHT defined here with their inverses are equally applicable, one of them is 

mathematically incorrect/incompatible due to the incorrect definition of the 2-D Hartley transform in literature. These 

definitions of STHTs can easily be extended to multi-dimensions. Computations of the STFT and the two versions of 

STHTs are illustrated based on 32 channels (traces) of synthetic seismic data consisting of 256 samples in each trace. 

Salient features of STHTs are incorporated. 
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 تحويلات هارتلي ثىائية الأبعاد للزمه القصير

 وارسيمان ساوذراراجان و علاءالذيه ابراهيمي  واواباراجا فاسودا

كما ٌُ انحال بانىسبت نخحُیم فُریيً، لا یىطبق بشكم مىاسب نهخمثيم غيز انثابج نلإشاراث انخي خصائصٍا الإحصائيت حخغيز  ححُیم ٌارحهی ان :الملخص

(  حقارن مع ححُیم فُریيً نهشمه انقصيز )  STHT)  كذانت في سمه؛ بانخاني إصذاراث مخخهفت مه ححُیلاث ٌارحهي نهشمه ثىائي الأبعاد نهشمه انقصيز

STFT  بانزغم مه َجُد اصذاریه مخخهفيه مه .)STHT ي انخطبيق، فان احذٌما غيزصحيح/ مخُافقً ریاضيا انمعزّفً ٌىا مع معکُسٍا انذیه مخساَیان ف

ح بسٍُنت إنى أبعاد مخعذدة؛ َقذ حم حُضي STHTsَمه انممکه حُسيع حعزیفاث  .بسبب انخعزیف انغيز صحيح نخحُیم ٌارحهي نهبعذیه في انمىشُراث

عيىت في كم أثز. کما حم دمج  352)أثز( مه انبياواث انسيشميت انمؤنفت حخأنف مه  23باالاسخىاد انی  قىاة  STHTsالإصذاریه ل حعزیف  َ STFTحسابان 

  .STHTsانخصائص انبارسة ل 

 

 .ححُیم فُریيً، ححُیم ٌارحهي،ححُیم انمُجاث، انشمه، فزیکُوسی َانىافذي: الكلمات المفتاحية

1. Introduction 

t is well known that the elegant mathematical tools, the Fourier transform (FT) and Hartley transform (HT), were 

invented in 1807 and 1942   respectively.  Subsequently, the theory of spectral analysis began with the breakthrough 

of Tukey in 1949 [1]. However, the computational feasibility of the FT was a reality only when the great breakthrough 

occurred in the form of the fast Fourier transform (FFT) algorithm that was brought out in 1965 by Cooley and Tukey 

[2].  

In general, the FT gives the spectral content of the signal, devoid of any information regarding the time at which 

those spectral components appear. Such a result is appreciable only for stationary signals [3], whose frequency content 

does not change with time. In most of the cases, a particular spectral component occurring at a specific time instant can 

be more useful and interesting, as in the case of seismological data which is non-stationary, and in which the frequency 

of the signal varies with time.  Mathematicians and researchers are aware that the Fourier transform is best suited to 

process stationary signals; however, most of the information and data we come across in our day to day life are not 

stationary. To achieve time localization of frequency of a non-stationary signal while using the FT, it is necessary that 

the signal be subjected to narrow windows, narrow enough that the portion of the signal seen from these windows is 

indeed stationary. This approach is called the short time Fourier transform (STFT), which is a modified version of the 

FT. In the STFT, the given signal is divided into small segments, such that each segment of the signal can be assumed 

to be stationary. For this purpose, a window function is chosen, so that the width of the window is equal to the segment 

of the signal, in which its stationarity is valid. Thus, the one dimensional STFT can be defined as [4-6]: 

      2 w
, w

i t
STFT f t g t e dt


 







                                                        (1) 

I 



NARASIMMAN SUNDARARAJAN
 
ET AL. 

42 

 

where ‘g’ is the window function and ‘ ’ is the width of the window.  

In analogy with the STFT, the short time Hartley transform (STHT),  is the real version of  its complex Fourier 

counterpart.  A time varying Hartley representation  of  signal for analyzing the time varying signal f(t)  can be defined 

[5] in its one dimension as: 

       , w 2 wSTHT f t g t cas t dt  
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where ‘g’is the window function and ‘ ’ is the width of the window. Further, the kernel in equation (2) represents a 

45 degrees phase shifted sine wave and is given as: 

)w2(sin)w2(cos)w2( tttcas    

 It may be emphasized here that the HT is an attractive alternative and real replacement for the well-known 

complex FT in all its applications. It is identical in its 1-D representation with the FT wherein the amplitude is the same 

as that of Fourier amplitude. Further, the HT is fully equivalent to the FT with the same physical significance in that 

both FT and HT furnish a pair of numbers that represent the physical oscillations in amplitude and phase and hence 

may be termed as a mathematical twin [7]. The theory and applications of this now well-known tool are found in the 

literature [8- 13]. 

Although the conventional Fourier and Hartley transforms are more appropriate to represent periodic, transient 

and stationary random signals, direct applications of these elegant tools fail in case of signals whose properties vary 

markedly as a function of time. In such cases, the time varying Fourier and Hartley transforms which are referred to as 

the STFT and STHT are employed to overcome the drawbacks of the FT and HT [14].  

The effects of windows may be realized by computing the STHT of a non-stationary signal with windows of two 

different lengths. For example, the Gaussian function may be used as a window function of the form:  

                                                       
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where ‘a’ determines the length of the window and ‘t’ is the time. Two different window functions can be generated for 

two different values of ‘a’. Generally, a narrower window function (a=0.01) may yield very good time resolution, but a 

relatively poor frequency resolution. On the other hand, a wider window function may result in a poor time resolution 

but does ensure better frequency resolution. A window function of infinite length yields the FT and ensures perfect 

frequency resolution, but no time resolution.  Thus, the window length needs to be optimized in applications, according 

to the desired results. 

2.   Frequency and Time Resolutions 

Short time Hartley transforms (STHT), as in the case of the STFT, obey the ‘Heisenberg Uncertainty Principle’, 

which holds good for the time frequency information of a signal. According to this principle, one cannot know what 

spectral components exist at what specific times but one can know the time intervals at which certain bands of 

frequencies exist. This is known as time frequency resolution. 

In STFT, if a window function of infinite length is used, we get the FT, which gives perfect frequency resolution, 

but no time information. In order to obtain stationarity, the narrower the width of the window function, the better the 

time resolution but the poorer the frequency resolution. Therefore, choice of  window function length becomes a trade-

off between frequency resolution and time resolution. Resolution in time and frequency cannot arbitrarily be small, 

because their product is lower bounded, and hence time localization and frequency resolution cannot simultaneously be 

determined to an arbitrary precision. This can be stated in terms of a redefinition of the Heisenberg Uncertainty 

Principle as: 

1.
4

t f


                                                                           (4) 

where t  and f  are the uncertainties in time and frequency [13]. 

So, to analyze various types of behavior in a signal, the STHT would have to be taken several times, each time 

with a different size of window function. This is especially problematic when the location and/or duration of transient 

behavior are unknown, which is normally the case [15]. However, it ensures better resolution than the use of either the 

FT or HTs [16]. 

2-D Fourier and Hartley Transforms 

The well-known complex 2-D Fourier transform of an image represented by a real function f(x, y) and its inverse 

are given [17, 12] as: 
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where u and v correspond to  x and y and are referred to as wave numbers. 

On the other hand, two different versions of 2-D Hartley transforms exist [12], and are given here. The 2-D 

Hartley transform of an image represented by f(x,y) and its inverse are given [17,12] as:  
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where  

      cas(ux+ vy) = cos (ux+ vy) +  sin (ux+ vy). 

 
Equations (7) and (8) (version I) are defined in many applications in analogy with the 2-D Fourier transform [8]. 

The other version (version II) of the 2-D HT can be written as [12]: 
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where, 
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and  
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.
 

Equation (9) is sometimes referred to as  the  cas-cas transform. Perkins [17] called it a ‘Hartley like’ transform. On the 

other hand, equation (7) is dubbed the ‘Fourier like’ 2-D HT. According to Sundararajan, equations (7) and (9) give 

rise to the same frequency information [12]. Furthermore, equation (9) is mathematically more appropriate than the 

conventional representation given by equation (8), which is mathematically incorrect since: 

                                                   exp[-(x u + y v)]   ≠   cas(x u). cas(y v)   

The discrete counterpart of  2-D Hartley transforms (DHT) of an image f(x,y) of size M x N and their inverses given by 

equations (5), (8), (6) and (9) can be expressed as [12]: 
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2-D STFT and STHTs  

It may be noticed that the HT (STHT) and its inverse possess the same kernel, unlike its progenitor, the FT, or any 

other integral transform. This is an exclusive characteristic associated with the HT [18]. The concept of the STHT can 

easily be introduced to 2-D and multi-dimensions. Accordingly, the 2-D STFT and the 2-D STHT of both the versions  
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(equation (7) and equation (9)) can be defined as: 
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It is also to be noted that most of the signals we come across in our day to day life are real, and hence their spectral 

studies can better be realized using a real tool like a HT/STHT rather than a complex tool like the FT/STFT which is 

computationally more expensive, since one complex and one real mathematical operation have  a  CPU time ratio of  

4:1.  

2.1  Computational Examples 

The 2-D STFT and the two different versions of the STHTs are illustrated with the computation of a set of 32 synthetic 

seismic traces (Figure 1) consisting of 256 samples in each trace making a data size of 256 32 . Each trace (Figure 1)  

represents the variation of amplitude with respect to time  and all the traces are separated  by a fixed interval of 

distance. Thus, the set of 32 seismic traces make the space- time function f(x,t). The computations of the STFT and the 

two versions of STHTs that yield the spectral amplitude versus frequency/wavenumber over each  window are based 

on equations (15, 16) and (17)  and are shown in Figures (2, 3) and (4) respectively. The normalized spectral 

amplitudes are given in Figures (2-4).  

 
 

                                           Figure 1. A set of 32 synthetic seismic traces represented by f(x, t). 
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                               Figure 2. Amplitude of short time Fourier transform (STFT) of f(x, t). 

 

 
                  Figure 3. Amplitude of short time Hartley  transform (STFT) of f(x, t)-version-I.  
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Figure 4. Amplitude of short time Hartley transform (STFT) of f(x, t)-version-II.  

3.  Discussion 

In general FT/STFTs can be replaced by their real versions called HT/STHT in all their applications without any loss 

of information, but with certain computational advantages. Although STHTs ensure better resolutions than their HTs, 

the optimization of window length for a desired result is again a cumbersome exercise. Therefore, what is needed is a 

mapping that uses one initial window function which varies its size automatically so that all frequency behavior can be 

analyzed with just one pass (narrow window function at high frequencies and wide window function at low 

frequencies). This is where the Wavelet transform comes in.  The Wavelet transform may address some of the 

shortcomings of the STFT/STHTs. Instead of fixing the time and the frequency resolutions t and f , one can let 

both resolutions vary in time frequency plane in order to obtain a multi-resolution analysis. This variation can be 

carried out without violating the Heisenberg inequality given in the equation (4). In this case, the time resolution must 

increase as frequency resolution decreases, and the frequency resolution must increase as time resolution decreases. 

This can be obtained by fixing the ratio of f  over f to be equal to a constant c as: 

 c
f

f



                                                                  (18) 

With this approach, the time resolution becomes arbitrarily good at high frequencies, while the frequency resolution 

becomes arbitrarily good at low frequencies. The Wavelet transform allows analysis of a signal that can locate energy 

in both time and frequency within the constraints of the uncertainty principle. Perhaps the Wavelet transform plays a 

significant role in signal analysis, overcoming the drawbacks encountered in the FT/STFT and HT/STHT, when carried 

out with appropriate mother wavelets [19]. Therefore, the Wavelet transform can be understood as being  the natural 

extension of the Hartley transform. The Wavelet transform leads to automatic windowing instead of fixed windows as 

in STHTs. 
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4.  Conclusion 

The appropriate choice between complex and real mathematical tools like the STFT and STHT, the STHT is ideal for 

studying non-stationary signals, and has the added advantage of computational efficacy.  
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