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ABSTRACT: The aim of the present study is to analyze numerically the steady boundary layer flow and heat 

transfer characteristics of Casson fluid with variable temperature and viscous dissipation past a permeable 

shrinking sheet with second order slip velocity. Using appropriate similarity transformations, the basic 

nonlinear partial differential equations have been transformed into ordinary differential equations. These 

equations have been solved numerically for different values of the governing parameters namely: shrinking 

parameter , suction parameter ,s Casson parameter , first order slip parameter ,a second order slip 

parameter ,b  Prandtl number Pr,  and the Eckert number Ec  using the bvp4c function from MATLAB. A 

stability analysis has also been performed. Numerical results have been obtained for the reduced skin-friction, 

heat transfer and the velocity and temperature profiles. The results indicate that dual solutions exist for the 

shrinking  0  surface for certain values of the parameter space. The stability analysis indicates that the 

lower solution branch is unstable, while the upper solution branch is stable and physically realizable. In 

addition, it is shown that for a viscous fluid    a very good agreement exists between the present 

numerical results and those reported in the open literature. The present results are original and new for the 

boundary-layer flow and heat transfer past a shrinking sheet in a Casson fluid. Therefore, this study has 

importance for researchers working in the area of non-Newtonian fluids, in order for them to become familiar 

with the flow behavior and properties of such fluids.  
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 تأثير الإوزلاق مه انذرجة انثاوية و انتبذد انهزج عهى تحهيم انتذفك عبر انطبقة انمتاخمة و خصائص الإوتقال انحراري نسائم كاسون

 محمذ مىصور رحمه و آيون بوب

ٌٙذف ٘زا اٌبحث إٌى دساست اٌتذفك اٌّطشد عبش اٌطبمت اٌّتاخّت ٚخصائض إٔتماي اٌحشاسي ٌسائً واسْٛ ِع ٚخٛد دسخاث حشاسة  :انمهخص

ٔزلاق ِٓ اٌذسخت اٌثأٍت. ٚتعتّذ طشٌمت اٌحً عٍى استخذاَ تحٌٛلاث اٌتشابٗ إِتغٍشة ٚتبذد ٌزج حٛي سطح رٚ ٔفارٌت ٚلابً ٌلإٔىّاش ٚفً ظً ٚخٛد 

ٚاٌتً ٌتُ ِٓ خلاٌٙا تحًٌٛ اٌّعادلاث الأساسٍت فً إٌّٛرج اٌشٌاضً اٌّستخذَ ٚاٌتً ً٘ عباسة عٓ ِعادلاث تفاضٍٍت خزئٍت غٍش خطٍت إٌّاسبت 

ٌداد حٍٛي عذدٌت ٌلاحتىان اٌسطحً إ. ٚتُ  "MATLABإٌى ِعادلاث تفاضٍٍت اعتٍادٌت ٚاٌتً ٌتُ حٍٙا بطشق اٌتحًٍٍ اٌعذدي باستخذاَ بشٔاِح "

 ماي اٌحشاسي ٚسشعت تذفك ٚدسخاث حشاسة اٌسائً باستخذاَ لٍُ ِختٍفت ٌعذة عٛاًِ فٍزٌائٍت ًٚ٘ ِعاًِ الأىّاشٚالأت ٚ ِعاًِ الاِتصاص أٚ  

، وّا تُ اٌمٍاَ بتحًٍٍ ثباث Ecٚ إوٍشث  Prٚأعذاد باسٔذتً  bٚاٌثأٍت  aٚ ِعاِلاث الإٔزلاق ِٓ اٌذسخت الأٌٚى  ِٚعاًِ واسْٛ  sاٌشفظ 

( ٚرٌه ٌمٍُ ِحذد ٌٍّعاِلاث اٌفٍزٌائٍت، وّا 0اٌحٍٛي اٌعذدٌت أٌضا. ٚلذ أشاسث إٌتائح إٌى ٚخٛد حٍٛي ِزدٚخت فً حاي الأسطح إٌّىّشت )

ت إٌى ٚخٛد أظٙشث ٔتائح تحًٍٍ الاستمشاس إٌى عذَ استمشاس اٌدزء اٌسفًٍ ِٓ اٌحً بٍّٕا اٌدزء اٌعٍٛي ِٓ اٌحً ِستمش ٌّٚىٓ تحمٍمٗ فٍزٌائٍا، إضاف

)تعٍك باٌسائً اٌٍزج تٛافك بٍٓ ٔتائح اٌذساست اٌحاٌٍت ٚاٌذساساث اٌسابمت فٍّا ٌ   . إْ إٌتائح اٌحاٌٍت تعذ لٍّت ٚخذٌذة فً دساست اٌتذفك (

ِداي اٌّطشد عبش اٌطبمت اٌّتاخّت ٚخصائض الأتماي اٌحشاسي ٌسائً واسْٛ حٛي سطح لابً ٌلأىّاش. ٚتعذ ٘زٖ اٌذساست راث أٍّ٘ت ٌٍباحثٍٓ فً 

 ت سٍٛن ٚخٛاص ٘زٖ إٌٛعٍت ِٓ اٌسٛائً.اٌسٛائً غٍش ٍٔٛتٍٍٕت ٌّعشف

 سائً واسْٛ، اٌطبمت اٌّتاخّت، إٔىّاش الأسطح، الإٔزلاق ِٓ اٌذسخت اٌثأٍت، حٍٛي ِزدٚخت، تحًٍٍ الاستمشاس.: انكهمات انمفتاحية



EFFECTS OF SECOND-ORDER SLIP AND VISCOUS DISSIPATION 

49 

 

1.  Introduction 

n the past several decades, there has been an increasing interest in the flows of Newtonian and non-Newtonian 

fluids over stretching/shrinking sheets because of their applications in processing industries such as paper 

production, hot rolling, wire drawing, glass-fiber production, aerodynamic extrusion of polymer fiber extruded 

continuously from a dye with a tacit assumption that the fiber is inextensible, etc. The cooling of a long metallic 

wire in a bath (an electrolyte) is another physical situation belonging to this category. Glass blowing, continuous 

casting, and spinning of fibers also involve the flow due to a stretching surface. During its manufacturing process 

a stretched sheet interacts with the ambient fluid thermally and mechanically. The thermal interaction is governed 

by the surface heat flux. This surface heat flux can either be prescribed or be the output of a process in which the 

surface temperature distribution has been prescribed. However, in real life situations one encounters a boundary 

layer flow over a non-linear stretching surface. For example, in a melt-spinning process, the extrudate is stretched 

into a filament while it is drawn from the dye. Finally, this surface solidifies while it passes through an effectively 

controlled cooling system in order for the final product to achieve top quality. Other examples include drawing of 

copper wires, continuous stretching of plastic films and artificial fibers, hot rolling, glass-fiber, metal extrusion, 

metal spinning, etc. (see Sparrow and Abraham [1], and Abraham and Sparrow [2]). The pioneering work on the 

steady boundary layer flow due to a linear stretching sheet was done by Crane [3]. Thereafter, various aspects of 

this problem have been studied extensively in Newtonian and non-Newtonian fluids. However, the extension of 

the theory of Newtonian fluids to the theory of non-Newtonian fluids has been proved to be not so straightforward 

(see, for example, Skelland [4], Denn [5], Rajagopal et al. [6], Bird et al. [7] and Slattery [8]).  

It is now generally recognized that, in real industrial applications, non-Newtonian fluids are more 

appropriate than Newtonian fluids. These fluids have wide-ranging industrial applications, such as in the design of 

thrust bearings and radial diffusers, drag reduction, transpiration cooling, thermal oil recovery, etc. In certain 

polymer processing applications, one deals with the flow of a second-order (viscoelastic) fluid over a stretching 

surface. Such fluids are referred to as fluids of the differential type, that is, fluids whose stress is determined by 

the Rivlin–Ericksen tensors (see Rivlin and Ericksen [9]), or fluids of the rate type, such as the Oldroyd-B fluid 

(see Oldroyd [10]), 3
rd

 grade fluid (see Hayat et al. [11]) etc. Polymers mixed in Newtonian solvents and polymer 

melts, such as high-viscosity silicone oils or molten plastics, are examples of such fluids. But in practice, many 

materials, like melts, muds, printing ink, condensed milk, glues, soaps, shampoos, sugar solution, paints, tomato 

paste, etc., show various characteristics which are not properly understandable using Newtonian theory. Hence, to 

analyse such fluids it is essential to  utilise non-Newtonian fluid mechanics. However, the main difficulty is to 

make a single constitutive equation which covers all the properties of such non-Newtonian fluids. Because of this, 

numerous non-Newtonian fluid models have been proposed in the literature. In nature, some non-Newtonian fluids 

behave like elastic solids, i.e. with small shear stress no flow occurs. Casson fluid is one such fluid. So, for flow to 

occur, the shear stress magnitude of a Casson fluid needs to exceed the yield shear stress, as otherwise the fluid 

behaves as a rigid body. This type of fluid can be categorised as a purely viscous fluid with high viscosity.  

Several models have been suggested for non-Newtonian fluids, with their constitutive equations varying 

greatly in complexity. Some authors (Fredrickson [12]) studied Casson fluid for the flow between two rotating 

cylinders. Eldabe and Elmohands [13] investigated the steady-flow behavior of a viscoelastic flow through a 

channel bounded by two permeable parallel plates, and Boyd et al. [14] discussed steady and oscillatory blood 

flow taking into account Casson fluid. Mernone et al. [15] described the peristaltic flow of a Casson fluid in a two-

dimensional channel. Mustafa et al. [16] studied the unsteady boundary layer flow and heat transfer of a Casson 

fluid over a moving flat plate with a parallel free stream and solved this problem analytically using the homotopy 

analysis method. Pramanik [17] studied Casson fluid flow and heat transfer past an exponentially porous 

stretching surface in the presence of thermal radiation. 

The objective of the present study is to analyze the boundary layer development (both momentum and 

thermal energy) of a Casson fluid past a permeable shrinking sheet with second-order slip velocity and viscous 

dissipation. Applying similarity transformations, the basic nonlinear partial differential equations are transformed 

into ordinary ones which are then solved numerically for different values of the governing parameters. A stability 

analysis is carried out for the acceptance of the physically realizable solutions. Numerical results are obtained for 

the reduced skin-friction coefficient, rate of heat transfer and the velocity and temperature distributations. 

I 
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Figure 1. The geometry of the problem of a shrinking surface. 

2.    Basic Equations 

Consider the steady two-dimensional flow of a Casson fluid past a permeable shrinking sheet with the 

velocity )(xuw , while the  second-order wall velocity slip is )(slip xu . The sheet is situated at 0y , the flow 

being confined to 0y , where y  is the coordinate measured in the normal direction to the surface and the 

coordinate x  is measured along the surface of the sheet as shown in Figure 1.  It is assumed that the temperature 

of the surface of the sheet is ( ),wT x while the constant temperature of the ambient (inviscid) fluid is ,T
where  

 TxTw )(  (heated sheet). We assume also that the rheological equation of state for an isotropic and 

incompressible flow of a Casson fluid can be written as,  
nnn /1/1

0

/1                                                                                 (1) 

or, (see Nakamura and Sawada  [18])  

 

ji

n
n

y

Bji e
p

2
2

/1































                                                              (2) 

where  is the dynamic viscosity, B is plastic dynamic viscosity of the non- Newtonian fluid, 
yp is yield stress 

of fluid,  is the product of the component of deformation rate with itself, namely, 
ijijee , and 

ije is the

thji ),(   component of the deformation rate, and that the constant n  takes the value 1n  in many practical 

applications. Under these conditions, and along with the assumption that the viscous dissipation term in the energy 

equation is taken into consideration, the boundary layer equations which govern this problem are 
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where u  and v  are the velocity components along x  and y  axes, T  is the fluid temperature,   is the 

thermal diffusivity of the fluid,   is the kinematic viscosity, 
pC  is the specific heat at constant pressure,   is the 

constant stretching ( 0 ) or shrinking ( 0 )  parameter, 2 /
B c y

p    is the non-Newtonian 

(Casson) parameter, and where we assume ( )wu x cx  and 
2

0
( )

w
T x T T x


  , )0(0 T  to be the 

temperature characteristic of the sheet. Further, following Wu [19] (used also by Fang et al. [20], Mahmood et al. 

[21]),  the wall second-order slip velocity )(slip xu , is given by  
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Here )1,/1min( nKl   and   is the momentum accommodation coefficient with 10   . Based on the definition 

of l , it is seen that for any given value of 
nK , we have 10  l . Since the molecular mean free path   is 

always positive it results in B  being a negative number. It is important to mention that Wu’s [19] second order 

slip velocity model is valid for any arbitrary Knudsen number and it matches better with the Fukui–Kaneko results 

 which are based on the direct numerical simulation of the linearized Boltzmann equation [22].  

We  look for a similarity solution of Equations (4)-(7) of the form: 

                           ycTTTTfxc w  /),/()()(),(                                     (8) 

where   is the stream function, which is defined in the classical form as yu  /  and xv  / . 

Thus, we have 

                                        
)(),('  fcvfxcu                                                                        (9) 

where prime denotes differentiation with respect to  .  

       Substituting  (7) into Eqs. (4) and (5), we obtain the following ordinary (similarity) equations  
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where cvs /0  is the constant parameter of suction ( 0s ) or injection ( 0s ), a  is the first order 

velocity slip parameter with 0/  cAa , b  is the second order slip velocity with 0/  cBb , 

 /Pr   is the Prandtl number and ( ) / ( ( ) )w p wEc u x C T x T
     is the constant Eckert number. It is 

worth pointing out that for  , Eq. (10) reduces to Eq. (7) for a viscous (Newtonian) fluid, as shown by Fang 

et al. [20].  

The physical quantities of interest are the skin friction coefficient 
fC  and the local Nusselt number xNu , 

which can be easily shown to be given by 
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where Re ( ) /
x w

u x x   is the local Reynolds number. 

3.  Stability Analysis 

Solving Eqs. (10) and (11) with the boundary conditions (12), it has been shown that dual (upper and lower 

branch) solutions exist for the case of a shrinking sheet )0(  . Thus, in order to see which solution is stable, 

and that it is physically realizable in practice, a stability analysis of these solutions is necessary. In this respect, we 

write Eqs. (1)-(3) corresponding to the unsteady flow and heat transfer as   
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subject to the initial and boundary conditions 

                            

0

0 slip

0 : , 0, for any ,

0 : , ( ) ( ), ( ) at 0

0, as

w w

t v v u T T x y

t v v u u x u x T T x y

u T T







   

     

  

           (17) 

where t denotes time. 

 Following Weidman et al. [23], Rosca and Pop [24-25], and Rahman et al. [26-28], a dimensionless time 

variable 
 
has to be introduced. The use of   is associated with an initial value problem and this is consistent 

with the question of which solution will be obtained in practice (physically realizable). Thus, the new variables for 

the unsteady problem are 
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Thus, Eqs. (14)-(16) can be written as 
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subject to the boundary conditions 
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         To test the stability of the steady flow solution )()( 0  ff   and )()( 0    satisfying the 

boundary-value problem (19)-(21), we write (see Weidman et al. [23] or Rahman et al. [26-28]) 

                         ),()(),(),,()(),( 00   GeFeff                           (22)  

where is an unknown eigenvalue parameter, and ),( F and ),( G  are small relative to )(0 f  and 

)(0  Introducing (22) into Equations. (19) and (20), we get the following linearized problem 
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along with the boundary conditions   
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   The solution )()( 0  ff   and )()( 0  
 
of the steady equations (10) and (11) is obtained by 

setting 0 . Hence )(0 FF   and )(0 GG   in (23) and (24) identify initial growth or decay of the 

solution (22). With respect to this, we have to solve the linear eigenvalue problem   

                0''')'2(''''')/11( 0000000  FfFfFfF                                                  (26)  
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G f G f G F Ec f F                            (27)         

along with the boundary conditions   

         

                            
0 0 0 0 0

0 0

(0) 0, '(0) ''(0) '''(0), (0) 0

'( ) 0, ( ) 0 as

F F a F b F G

F G  

   

  
                                  (28) 

 It should be stated that for particular values of  ,  , a , b , Ec , and Pr  the stability of the 

corresponding steady flow solution )(0 f  and )(0   is determined by the smallest eigenvalue  . As has been 

suggested by Harris et al. [29], the range of possible eigenvalues can be determined by relaxing a boundary 

condition on )(0 F  or )(0 G . For the present problem, we relax the condition that 
0
( ) 0G    as   

and for a fixed value of   we solve the system (26)-(27) along with the new boundary condition 
0 (0) 1G   . 

4.   Numerical Technique 

Following Rahman et al. [26-28], the ordinary differential equations (10)-(11) subject to the boundary 

conditions (12) are solved numerically using the function bvp4c from the very robust computer algebra software, 

MATLAB. The function bvp4c requires writing equations (10)-(11) as first order differential equations by 

introducing new variables: one for each variable in the original problem plus one for each derivative up to the 

highest order derivative minus one. It then implements a collocation method for the solution of the following 

boundary value problem 

                                   ( , )x w t x  , a t b                                                                     (29)  

 

subject to the two-point boundary conditions 

                                   ( ( ), ( )) 0bc x a x b  .                                                                        (30) 

The approximate solution ( )t  is a continuous function that is a cubic polynomial on each subinterval 

1[ , ]n nt t 
 of the mesh 

0 1 2.......... Na t t t t b     . It satisfies the boundary conditions 

                                   ( ( ), ( )) 0bc a b                                                                           (31) 

and it also satisfies the following differential equations (collocates) at both ends and mid-point of each subinterval 

                                   ( ) ( , ( ))n n nt w t t                                                                         (32)  

                                  
1 1 1

(( ) / 2) (( ) / 2, (( ) / 2))
n n n n n n

t t w t t t t 
  

                                    (33) 

                                   1 1 1( ) ( , ( ))n n nt w t t   
                                                                 (34) 

These conditions result in a system of nonlinear algebraic equations for the coefficients defining ( )t , 

which are solved iteratively by linearization. Here ( )t  is a fourth order approximation to an isolated solution 

( )x t , i.e. 
4

|| ( ) ( ) ||x t t K h  , where K  is the maximum of the step sizes 
1n n n

h t t


   and K  is a constant. 

For such an approximation, the residual ( )r t  is the ordinary differential equation and  is defined by 

                                   ( ) ( ) ( , ( ))r t t w t t   .                                                                (35) 

In this approach mesh selection and error control are based on the residual of the continuous solution. The 

relative error tolerance was set to
710

. The condition    needs to be replaced by a suitable finite value of 

  , say  . We started the computation at a small value, for example, 5 , then subsequently increased the 

value of   until the boundary conditions were verified. In using this method, we chose a suitable finite value of 

 , namely 20   for the upper branch (first) solution and  in the range 40-60 for the 

lower branch (second) solution.  

The present problem may have more than one solution. Thus the bvp4c function requires an initial guess of 

the desired solution for the system (10)-(11). The guess should satisfy the boundary conditions and reveal the 

characteristics of the solution. The bvp4c method always converges to the first solution even for poor guesses of 

the initial conditions. Thus, determining an initial guess for the first (upper branch) solution is not difficult. On the 

other hand, it is very difficult to come up with a sufficiently good guess for the second (lower branch) solution of 

the system (10)-(11). To overcome this difficulty, we need to start with a set of parameter values for which the 

problem is easy to solve. Then, we use the obtained result as the initial guess for the solution of the problem with 

small variation of the parameters. This is repeated until we reach the right values of the parameters. This technique 
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is called continuation. Examples of solving boundary value problems by bvp4c can be found in the book by 

Shampine et al. [30] or through an online tutorial by Shampine et al. [31].  

The numerical simulations are carried out for various values of the physical parameters such as Casson 

parameter (  ), suction parameter ( s ), shrinking parameter (  ), first order slip parameter ( a ) and second order 

slip parameter  ( b ), Eckert number ( Ec ) and Prandtl number ( Pr ). Because of the almost complete lack of 

experimental data, the choice of the values of the parameters is dictated by the values chosen by previous 

investigators. The value of the Prandtl number is set equal to 1 throughout the paper unless otherwise specified. 

The values of the other parameters are mentioned in the description of the respective figures.  

It is worth mentioning that for a viscous fluid (  ) and for 1   (stretching sheet), in the absence of 

fluid suction 0s  and second order slip parameter 0b  , equation (10) 
2

0f ff f      subject to the 

boundary conditions (0) 0f  , (0) 1 (0)f af   , ( ) 0f     matches with that of Wang [32-33], Anderson 

[34], and Sahoo and Do [35]. Wang [32-33] and Anderson [34] obtained an exact solution of (9) subject to the 

above-mentioned boundary conditions. To test the accuracy of the current numerical solution, the values of 

(0)f   and ( )f   are compared with analytical values reported by Wang [32-33] and Sahoo and Do [35] in 

Table 1. This table shows that the numerical values produced by the current code and the exact analytical 

solutions reported by Wang [32-33] and Shahoo and Do [35] are in very good agreement. This gives us 

confidence to use the present code. 

It can further be mentioned that for a viscous fluid (   ) Eq. (10) 
2

0f f f f      along with 

the boundary conditions (0)f s , (0) (0) (0)f af bf     , ( ) 0f    as    exactly matches 

with the corresponding Eq. (10) and boundary conditions (12) of  Rosca and Pop [24] when the buoyancy force in 

their model is neglected. We also mentioned that for 1    (shrinking sheet), the above-stated equation together 

with the corresponding boundary conditions also matches with Eqs. (7)-(8) of Fang et al. [20]. Table 2 shows the 

comparison of the values of (0)f   for 1a   and several values of s  and b  when 1    with those reported 

by Fang et al. [20], and Rosca and Pop [24]. In fact, the results show excellent agreement among the data, thus 

giving us confidence to use the present MATLAB code. 

5.   Results and Discussion 

The numerical simulation of  Eqs. (10) to (11) subject to the boundary conditions (12) are carried out for 

various values of the physical parameters , ,s , ,a ,b Ec  and Pr  for obtaining the condition under which 

the dual (upper and lower branch) solutions for the steady flow of a Casson fluid over a shrinking surface may 

exist. Miklavčič and Wang [36] have studied the steady viscous (Newtonian) fluid flows over a permeable linearly 

shrinking surface and have shown that suction at the wall will generate dual solutions only when the suction 

parameter s  is greater than or equal to 2.  

 

Table 1. Comparison of results (0)f   and ( )f   with the first order slip parameter a  when   , 0,s   

and 1  .  

 

a   (0)f    ( )f   

Current 

result 

Sahoo and Do 

[35] 

Wang 

[32] 

 Current 

result 

Sahoo and Do 

[35] 

Wang 

[32] 

Wang 

[33] 

0.0 

0.2 

0.3 

0.5 

1.0 

2.0 

3.0 

5.0 

10 

20 

1.000000 

0.776377 

0.701548 

0.591195 

0.430159 

0.283979 

0.214054 

0.144840 

0.081242 

0.043788 

1.001154 

0.774933 

0.699738 

0.589195 

0.428450 

0.282893 

0.213314 

0.144430 

0.081091 

0.043748 

1.0 

- 

0.701 

- 

0.430 

0.284 

- 

0.145 

- 

0.0438 

 0.999973 

0.919076 

0.888544 

0.839278 

0.754859 

0.657267 

0.598141 

0.524529 

0.431842 

0.349999 

1.001483 

0.919010 

0.888004 

0.838008 

0.752226 

0.652253 

0.590892 

0.513769 

0.413655 

0.322559 

1.0 

- 

0.887 

- 

0.748 

0.652 

- 

0.514 

- 

0.332 

1.0 

- 

- 

0.8393 

0.7549 

- 

0.5982 

- 

0.4331 

- 

 

 

                 

 

 



EFFECTS OF SECOND-ORDER SLIP AND VISCOUS DISSIPATION 

55 

 

 

Table 2. Comparison of (0)f   for 1a  , 2,  3s   and 1,  2b     when 1   . 

s   a   b   Present study Rosca and Pop [24] Fang et al. [20] 

Lower branch Upper branch Lower branch Upper branch Lower branch Upper branch 

2 

2 

 

3 

3 

1 

1 

 

1 

1 

-1 

-2 

 

-1 

-2 

0.25659275 

0.22573384 

 

0.20223817 

0.18809181 

0.29054789 

0.18465688 

 

0.23201653 

0.1369054 

0.2565 

0.2257 

 

0.2022 

0.1868 

0.2905 

0.1846 

 

0.2320 

0.1369 

0.2565 

0.2257 

 

0.2022 

0.1868 

0.2905 

0.1847 

 

0.2317 

0.1371 

 
 

  
 

Figure 2. Variations of (0)f   for different values 

of   at 2   when 1,a  1b   , 2.5,s 

1,Ec   and Pr 1 . 

 

Figure 3. Variations of (0)  for different values 

of   at 2   when 1a  , 1b   , 2.5s  , 

1Ec  , and Pr 1 . 

 

In Figures 2 to 7, we have investigated the variation of the reduced skin friction coefficient 

  1/2
/ ( 1) Re ''(0)

x f
C f     and the reduced local Nusselt number (or heat transfer from the surface of the 

sheet) 
1/2Re '(0)x xNu    of a Casson fluid for different values of  , s  and   respectively,  keeping the 

values of the other parameters 1a  , 1b   , 1Ec  , and Pr 1  fixed. From these figures we see that the 

number of solutions depends on the shrinking parameter  , suction parameter s , and Casson parameter  . In 

Figures 2 and 3 we have identified two critical  ’s say 
s  and 

c  such that 0
c s
    where s  is the 

critical value of   for the lower branch and c  is the critical value of   for the upper branch in which the 

solution exists. That is, for a Casson fluid flow over a shrinking sheet, there exist dual solutions when 0s  

, one solution which is the upper branch when ,
c s
     and no solution when c  . Thus, for c   the 

full Navier-Stokes equations and energy equation need to be solved.  Figure 2 also shows that values of (0)f   

for both the upper and lower branches decrease with the increase of   when other parameter values are fixed. For 

the upper branch solution these values are higher than the corresponding lower branch solution. Now the question 

is which of these solutions is physically acceptable. From the stability analysis it is found that the upper branch 

solution is stable and physically acceptable whereas the lower solution branch is unstable and physically 

unacceptable. Table 3 presents the smallest eigenvalues   for the upper branch solution at several values of ,a b

and .  This table shows that smallest eigenvalues for the upper branch solution are positive, hence the perturbed 

part F of the solution f will be diminished and converged to the steady state solution 0f  when    as can 

be seen from Eq. (22). Thus, the upper branch solution is stable and physically acceptable. On the other hand the 

smallest eigenvalues for the lower branch solution are negative which indicates that the perturbed part F of the 

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
-0.2

0

0.2

0.4

0.6

0.8

1

1.2



f 

(
0

)

[
s
, f 


(0)] = [-1.5357, 0.440185]

[
c
, f 


(0)] = [-3.0993, 1.028130]

upper branch solution

lower branch solution
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0
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14

16
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

-

 (
0

)

[
s
, f

(0)]= [-1.5357, 2774.813008]

[
c
, f

(0)]= [-3.0993, 0.511846]

lower branch solution

upper branch solution



MOHAMMAD M. RAHMAN AND IOAN POP 

56 

 

solution f will grow enormously with time when    as can be seen from Eq. (22). Therefore, the lower 

branch solution is unstable and not physically realizable.   Figure 3 shows that values of (0)  for the upper 

branch solution increase with the increase of   whereas they decrease with the increase of  . As   approaches 

to 
s , the values of (0)  increase very rapidly. At 

s  , this value is (0) 2774.813  . In the figure we 

have truncated the lower branch solution as in this scale upper branch solution is not visible properly. 

 

Table 3. Smallest eigenvalues   for different values of a , b  when 0     (Casson fluid) and  

(Newtonian fluid) at 2.5s  , 0.5   , 0Ec  , Pr 1 . 

 

a   b     Smallest eigenvalues    

Upper branch, 
c  Lower branch, 

s  

0 

1 

1 

1 

1 

1 

-1 

-1 

0 

-1 

-1 

-1 

2 

2 

2 

10 

100 

   

1.5528 

1.5880 

1.8004 

1.6276 

1.6342 

1.9308 

-0.1262 

-0.1316 

-0.1443 

-0.1973 

-0.2169 

-0.2193 
 

In Figures 4 and 5, respectively, the effects of the suction parameter s on the reduced skin friction 

coefficient and Nusselt number are displayed. These figures confirm that dual solutions can be found when 

0ss s  , one solution when 0
c s

s s s   and no solution when 
cs s . The critical 2.1001ss   belongs 

to the lower branch solution while 1.6993
c

s   belongs to the upper branch solution when other parameters 

values 1,   1,a  1,b    2  , 1Ec  , and Pr 1  are fixed. The critical 1.6993
c

s   is lower than the 

value 2 calculated by Miklavčič and Wang [36] for a steady viscous (Newtonian) fluid flow over a permeable 

linearly shrinking surface.  Thus, for a Casson fluid, flows over a shrinking surface a minimum fluid withdrawal 

from the boundary layer compared to the viscous fluid will produce dual solutions. The values of (0)f   for the 

upper branch solution first increase with the increase of s  up to a certain value when 
1cs s s  (say), then 

decrease with the further increase of 1s s . On the other hand, the values of (0)f   for the lower branch 

solution first decrease up to a certain value with the increase of s  when 
2ss s s   (say), then they increase 

with the further increase of 
2s s . It is worth noting that 

2 1s s . The values of (0)f  for the upper branch 

solution are higher than those of the lower branch solution within the solution domain 4.23ss s  . For 

4.23s   an opposite trend is observed. On the other hand values of (0)  (Figure 5) for the upper branch 

solution increase with the increase of cs s  while for the lower branch solution these values first decrease to a 

minimum value when 
3ss s s   (say) then start to increase with the further increase of the suction parameter. It 

is to be mentioned that to display both the solutions branch in the same scale we have truncated the lower branch 

solution vertically while plotting. 
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Figure 4. Variations of (0)f   for different values of 

s  at 1    when 1a  , 1b   , 2  , 1Ec  ,    

and Pr 1 . 

Figure 5. Variations of (0)  for different values 

of s  at 1   when 1,a  1,b   , 2, 

1Ec  , and Pr 1 . 

 

 

  

Figure 6. Variations of (0)f   for different values 

of   at 1    when 1a  , 1b   , 2.5,s   

1,Ec  and Pr 1 . 

Figure 7. Variations of (0)  for different values 

of   at 1   when 1a  , 1b   , 2.5s  , 

1,Ec  and Pr 1 . 

 

In Figures 6 and 7 we have displayed the reduced skin friction coefficient and reduced Nusselt number for 

various values of the Casson parameter  when 1,   1,a  1,b   2.5,s  1Ec  , and Pr 1 . For 

these studied parameter values two critical values of  , one for the lower branch 1.1818s   and the other for 

the upper branch 0.5620,
c

 
 
are identified for the existence of the solution. These figures show that dual 

solutions can be found when s  . The upper branch solution is always bigger than the lower branch solution. 

Within the region 0.85c    the upper solution increases quite rapidly to its maximum value 0.3333 then 

starts to decrease with the further increase of  . As mentioned earlier a large   i.e.    corresponds to the 

viscous (Newtonian) fluids. Figure 6 clearly indicates that as   becomes large the physically realizable values of 

(0)f   approach to their asymptotic value 0.2724.  Figure 7 indicates that the asymptotic value of the reduced 
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Nusselt number is 2.2421 when   becomes large. This figure clearly reveals that the rate of heat transfer in a 

Casson fluid is lower compared to the rate of heat transfer in a viscous (Newtonian) fluid. 
 

Table 4. Critical   and corresponding values of (0)f   for different a , b , and   when 2.5s  , 1Ec  ,          

and Pr 1 . 

 

 

a   
 

b   

 

  

Upper branch solution  Lower branch solution 

 

c  (0)f    
s  (0)f   

0 -1 2 

2.5 

5 

  

-2.0712 

-2.4046 

-3.4199 

-5.3429 

1.027056 

1.176313 

1.590792 

2.271937 

 -1.0955 

-1.2444 

-1.6454  

-2.3477         

 

0.440174 

0.528697       

0.767231 

1.155035         

 

1 -1 2 

2.5 

5 

  

-3.0993 

-3.5834 

-5.0176   

-7.6291             

1.028129 

1.179225 

1.599951 

2.293422 

 -1.5357 

-1.7732  

-2.4330 

-3.5028 

0.440184 

0.528737 

0.772045 

1.155058 

 

1 0 2 

2.5 

5 

  

-2.0002 

-2.2196 

-2.8136 

-3.7550 

1.002087 

1.151879 

1.577269 

2.281026 

 -2.0001 

-2.2195 

-1.9169 

-2.5438           

0.996414 

1.147576 

0.771982 

1.155041 

 

 

Table 5. Critical   and corresponding values of (0)  for different a , b , and   when 2.5s  , 1Ec  , 

Pr 1.  

 

 
a   

 

b   

 

  

Upper branch solution  Lower branch solution 

 

c  (0)   
s  (0)  

0 -1 2 

2.5 

5 

  
 

-2.0712 

-2.4046 

-3.4199  

-5.3429         

 

0.550963 

0.426726 

0.090219 

-0.434987             

 -1.0955 

-1.2444 

-1.6454  

-2.3478          

 

2642.053988 

3003.454371 

4323.338580 

6507.086524 

                   

1 -1 2 

2.5 

5 

  

-3.0993 

-3.5834 

-5.0176   

-7.6291             

0.511845 

0.359193 

-0.024985 

-0.610166 

 

 -1.5357 

-1.7732  

-2.4330 

-3.5028 

2774.813008 

3652.195429 

4201.941189 

6579.395747 

1 0 2 

2.5 

5 

  

-2.0002 

-2.2196 

-2.8136 

-3.7550 

 0.018269 

-0.193895 
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     -0.026184 

     -0.242078 
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In Tables 4 and 5 we have investigated in details the effects of the first order slip parameter a , second order 

slip parameter b  on the critical  , reduced skin friction coefficient and local Nusselt number for different values 

of the Casson parameter   when 2.5s  , 1Ec  , and Pr 1  are fixed. From Table 4 we notice that the 

critical | |c  for the upper branch solution as well as | |s  for the lower branch solution increases with the 

increase of the Casson parameter  , first order slip parameter a , and absolute value of the second order slip 

parameter | |b . We also notice that values of (0)f   increase with the increase of a  as well as | |b  for a fixed 

value of the Casson parameter  . Thus, the presence of first and second order slip parameters broadens the 

solution space before the boundary layer is going to separate. Table 5 shows that the critical | |c  increases with 

the increase of the Casson parameter  , first order slip parameter a , and second order slip parameter | |b . The 
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local Nusselt number ( (0) ) decreases with the increase of   and a , while it increases with the increase of 

| |b . For large  , the local Nusselt number becomes negative which indicates that heat transfer takes place from 

the fluid to the surface.  

 

  
 

Figure 8. Velocity profiles ( )f   for different 

values of   when 1   , 1a  , 1b   , 

2.5s  , 1Ec  , and Pr 1 . 

 

Figure 9. Temperature profiles ( )   for different 

values of   when 1   , 1a  , 1b   , 

2.5s  1,Ec   and Pr 1 . 

 

 

  
 

Figure 10. Velocity profiles ( )f   for different 

values of s  when 1   , 1a  , 1b   , 

2  , 1Ec  ,   and Pr 1 . 

 

Figure 11. Temperature profiles ( )   for 

different values of s  when 1   , 1a  , 

1b   , 2  , 1Ec  , and Pr 1 . 

 

The variations of the dual solutions in terms of dimensionless velocity '( )f   and temperature ( )   

profiles of a Casson fluid for different values of the Casson parameter ,  suction parameter ,s second order slip 

parameter b , first order slip parameter ,a and Eckert number Ec  are demonstrated in Figures 8 to 16 for a 

shrinking surface ( 1   ) when for Pr 1 . It is seen from Figure 8 that the hydrodynamic boundary layer 

thickness for the upper branch solution is always thinner than that of the lower solution branch. This figure also 
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reveals that the velocity profile ( )f   increases with the increasing values of the Casson parameter   for the 

upper branch solution. For smaller values of   the rate of increase in velocity is quite rapid compared to the rate 

of increase for large values of  . For large values of   , the fluid behaves like a viscous (Newtonian) 

fluid. On the other hand the temperature of the Casson fluid and hence the thickness of the thermal boundary layer 

decreases for the upper branch solution with the increase of   (see Figure 9). An opposite trend is observed for 

the lower branch solution. These figures clearly demonstrate that the thicknesses of the hydrodynamic and thermal 

boundary layers are thinner for a viscous (Newtonian) fluid compared to the Casson fluid. 

Figure 10 reveals that the velocity profile ( )f   increases, and hence the hydrodynamic boundary layer 

thickness decreases, with the increasing values of the suction parameter s  for the upper branch solution. A 

reverse effect of s  on the velocity profiles is observed for the lower branch solution. Figure 11 shows that the 

temperature profiles (𝜂) in the vicinity of the surface decrease with the increase of s  either for an upper solution 

branch or for a lower solution branch. The thickness of the thermal boundary layer for the upper solution branch is 

lower than the corresponding thickness of the lower solution branch.  

 

  
 

Figure 12. Velocity profiles ( )f   for different 

values of b  when 1   , 1a  , 2.5s  , 

2  , 1Ec  , and Pr 1 . 

 

Figure 13. Temperature profiles ( )   for 

different values of b  when 1   , 1a  , 

2.5s  , 2  , 1Ec  , and Pr 1 . 

 

The dimensionless velocity '( )f   and temperature ( )   profiles of a Casson fluid due to the second order 

slip parameter b  and first order slip parameter a  are displayed in Figures 12-15, when 2  , 2.5s  , 

1   , Pr 1 . It is seen that the velocity distributions ( )f   (Figures 12 and 14) of the Casson fluids within 

the boundary layer increase with the increase of | |b  as well as with the increase of a  for the upper branch 

solution, whereas for the lower solution branch these distributions decrease except very close to the surface of the 

shrinking sheet where they increase with the increase of the parameter | |b  and also with the increase of a . The 

thicknesses of the thermal boundary layer decreases with the increase of the parameter | |b  and also with ,a as 

can be seen from Figures 13 and 15. Thus, the second and first order slip parameters reduce the thicknesses of the 

hydrodynamic and thermal boundary layers. We notice that the effect of a  is more pronounced than the effect of 

b  on the velocity and temperature fields. Therefore, first and second order slips play an important role in 

modeling boundary layer flows with Casson fluids over a shrinking surface. 

Finally, the effect of the Eckert number Ec  on the temperature distribution is depicted in Figure 16 when 

1   , 2  , 1a  , 1b   , 2.5s  ,  and Pr 1 . For these studied parameter values we notice that 

temperature distribution within the boundary layer for the upper branch solution increases with the increase of 

Ec . An increasing Ec  generates more frictional heating which in turn induces the flow rate to increase.  An 

opposite effect of Ec  on the temperature distribution is observed for the lower branch solution. 
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Figure 14. Velocity profiles ( )f   for different 

values of a  when 1   , 1b   , 2.5s  , 

2,  1Ec  , and Pr 1 . 

 

Figure 15. Temperature profiles ( )   for 

different values of a  when 1   , 1b   , 

2.5s  , 2,   1Ec  , and Pr 1 . 

 

 

 
 

Figure 16. Temperature profiles ( )   for different values of Ec  when 1   , 1a  , 1b   , 2.5s  , 

2  , and Pr 1 . 

6.   Conclusion 

In this paper we investigate the steady forced convective boundary layer flow and heat transfer 

characteristics of a Casson fluid over a permeable shrinking surface with variable temperature in the presence of 

second-order slip at the interface. A numerical simulation is carried out to investigate the existence of the dual 

solutions. The critical shrinking, suction and Casson parameters have been identified for the existence of the dual 

solutions. 

Following our numerical computations it is concluded that dual solutions exist only when 0 s   , 

ss s  and s   for fixed values of the other parameters where the subscript s  stands for the solution 

corresponding to the lower branch. The upper branch solution is found to be stable and hence physically 
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acceptable, while the lower branch is unstable and hence physically not realizable. The critical | |c corresponding 

to the stable solution increases with the increase of the Casson parameter ,  first order slip parameter ,a
 
and 

magnitude of the second order slip parameter | | .b The rate of heat transfer in a Casson fluid is lower than the rate 

of heat transfer in a viscous (Newtonian) fluid. The thicknesses of the hydrodynamic and thermal boundary layers 

are thicker for a Casson fluid than a viscous (Newtonian) fluid. The presence of first and second order slip 

parameters broaden the solution space before the boundary layer is given a chance to separate. 

An extension of this work is underway exploring the heat transfer augmentation considering Casson fluid-

based nanofluid.  
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