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Abstract: Functional systems arise in the treatment of systems of partial differential equations, delay-differential 

equations, multidimensional equations, etc. The problem of reducing a linear functional system to a system containing 

fewer equations and unknowns was first studied by Serre. Finding an equivalent presentation of a linear functional 

system containing fewer equations and fewer unknowns can generally simplify both the study of the structural 

properties of the linear functional system and of different numerical analysis issues, and it can sometimes help in 

solving the linear functional system. In this paper, Fuhrmann's equivalence is used to present a constructive result on 

the reduction of under-determined linear functional systems to a single equation involving a single unknown. This 

equivalence transformation has been studied by a number of authors and has been shown to play an important role in 

the theory of linear functional systems. 
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conjecture.  

 (Fuhrmann) اختصار الأنظمة الذالية الخطية باستخذام تكافؤ فورمان 

 محمذ الصالح بودليوة

ة الأبعاد. حسخخذو الأَظًت انذانٍت فً دساست أَظًت انًعادلاث انخفاضهٍت انجضئٍت ٔالأَظًت انخفاضهٍت راث الإعالاث انضيٍُت ٔكزنك الأَظًت يخعذد :الملخص

نشٌاضً انفشَسً ٔلذ حًج دساست اخخصاس الأَظًت انذانٍت انخطٍت إنى أَظًت ححخٕي عهى عذد ألم يٍ انًعادلاث ٔانًجاٍْم لأٔل يشة يٍ طشف انعانى ا

. ٔانٓذف الأساسً يٍ عًهٍت الاخخصاس ْزِ ْٕ حسٍٓم دساست ْزِ الأَظًت يٍ حٍث حهٓا أٔ حطبٍك طشق عذدٌت عهٍٓا َسخخذو فً ْزا انبحث  (Serre)ساس 

نخمذٌى َخٍجت بُاءة لاخخصاس بعض الأَظًت انذانٍت انخطٍت َالصت انخعٍٍٍ حٍث أٌ انُظاو انًخخصش ٌحخٕي عهى يعادة ٔاحذة  (Fuhrmann)حكافؤ فٕسياٌ 

 ًت انذانٍت انخطٍت.راث دانت يجٕٓنت ٔاحذة. ْزا انخكافؤ حى دساسخّ يٍ طشف عذد يٍ انباحثٍٍ ٔحبٍٍ يٍ رنك أٌ ْزا انخكافؤ ٌهعب دٔسا يًٓا فً َظشٌت الأَظ

 

 بٕص.-َظشٌت نٍٍٔ سٕسهٍ-حكافؤ فٕسياٌ، َظشٌت كٌٕهٍ ،خخصاسانخطٍت انذانٍت، الا تالأَظً: الكلمات المفتاحية

 

1. Introduction 

olynomial matrices play an important role in the theory of linear systems described by ordinary differential 

equations (see for example Rosembrock [1] and Kailath [2]). In this case, the polynomial matrices involve a single 

indeterminate with coefficients in the field of real or complex numbers. The study of linear systems of ordinary 

differential equations is thus reduced to the study of matrices over the ring [ ]s  or [ ]s . These rings have the 

Euclidean division property which makes it possible to establish canonical forms such as the Smith normal form. In 

fact, the polynomial theory of such systems can be regarded as more or less complete. In the case of linear functional 

systems, arising for example from partial differential equations or delay-differential equations, the resulting system 

matrices involve polynomials in more than one indeterminate. Since multivariate polynomial rings do not have the 

Euclidean division property, it is no longer possible to extend most of the results obtained for the single indeterminate 

case. Throughout this paper unless specified otherwise,    [       ] denotes the polynomial ring in the 

indeterminates         with coefficients in an arbitrary but fixed field K. First we present a few definitions that will 

be needed later in the paper.  
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Definition 1.1 Given a matrix 
q pT D  , the i th order invariant polynomial 

i  of T  is defined by :  

 1

; 1
=

0; min( , )

i

ii

i r

r i p q



 


 

 
  

                                                                      (1) 

 where r  is the normal rank of T , 
0 =1  and 

i  is the greatest common divisor of all the i i  minors of .T  

  As in the single variable case, the zero structure of a multivariate polynomial matrix is a crucial indicator of its 

properties. However, unlike the single variable case, the zero structure of a multivariate polynomial matrix is not 

completely captured by the invariant polynomials but by the invariant zeros as defined by the following.  

Definition 1.2 [3, 4, 5] Let 
1= [ , , ]nD x x , 

q pR D  , ( > )p q  be a full row rank matrix and 
i
 the 

ideal generated by the i i  minors of R  and ( )iV  the algebraic variety defined by:  

 ( ) ={ | ( ) = 0, }.n

iV P P     

The i th order invariant zeros of R  are the elements of the variety ( )iV .  

Definition 1.3 Let 
1= [ , , ]nD K x x . The general linear group ( )pGL D  is defined by:  

  ( ) = | : = =p p p p

p pGL D M D N D MN NM I     

An element ( )pM GL D  is called a unimodular matrix. It follows that M  is unimodular if and only if the 

determinant of M  is invertible in D , i.e., is a non-zero element of .K  

 Definition 1.4 Two polynomial matrices 
1T  and 

1S  of appropriate dimensions, are said to be zero-left-coprime 

( ZLC )  if the matrix  1 1T S  admits a right-inverse in D . Similarly, 
2T  and 

2S , of appropriate dimensions, are 

said to be zero-right-coprime ( ZRC )  if the matrix  2 2

T
T TT S  has left-inverse in D .  

 One of standard tasks carried out in systems theory is to transform a given system representation into a simpler 

form. An equivalence transformation used in the context of multidimensional systems is Fuhrmann's equivalence [6] 

and is defined by the following.  

Definition 1.5 (Fuhrmann's Equivalence) Let ( , )T m n  denote the class of ( ) ( )r m r n    matrices 

with elements in D  where ,m n  are fixed positive integers and > min( , )r m n . 
1T  and 

2T  are said to be 

Fuhrmann-equivalent (F-E) if there exist matrices 
1S , 

2S  of appropriate dimensions with elements in D  such that  

                                  
2 1 2 1=S T T S                                                                                        (2) 

 where 
1 1,T S  are ZLC and 

2 2,T S  are ZRC.  

 In the case when 
1T  and 

2T  have the same size and 
1S  and 

2S  are square, the transformation in (2) reduces to 

the classical unimodular equivalence. F-E has been studied by a number of authors. For instance, Pugh et al. [7, 8] 

have shown that it exhibits fundamental algebraic properties amongst its invariants. In particular, they have shown that 

it preserves the invariant polynomials as well as the the invariant ideals.  

Lemma 1.1 [7] Suppose that two matrices 
1T  and 

2 ( , )T m n  are related by F-E and let 

[ ] [ ] [ ]
1 1 1

1 2, , ,
T T T

h    where 
[ ] [ ]

1 1= min( , ),
T T

h r m r n   denote the invariant polynomials of 
1T  and 

[ ] [ ] [ ]
2 2 2

1 2, , , ,
T T T

k    where 
[ ] [ ]

2 2= min( , ),
T T

k r m r n   denote the invariant polynomials of 
2T , then  

 
[ ] [ ]

1 2= for = 0,1, ,max( 1, 1)
T T

h i i k ic i k h                                                       (3) 

 where  

                                              
[ ] [ ]

1 2=1, =1 for any <1,  \{0}.
T T

j j ij c    

Lemma 1.2 [8] Suppose that two matrices 
1T  and 

2T  ( , )m n  are related by F-E and let 
[ ]

1
T

j  for 

[ ] [ ]
1 1=1, , = min( , )

T T
j h r m r n   denote the ideal generated by the j j  minors of 

1T  and 
[ ]

2
T

i
, for 

[ ] [ ]
2 2=1, , = min( , )

T T
i k r m r n   denote the ideal generated by the i i  minors of 

2T . Then  

  
[ ] [ ]

1 2= , = 0, ,
T T

h i k i i h 
                                                                                              (4) 
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 where  

 = min( 1, 1)h h k   

and for any >i h ,  

 
[ ] [ ]

1 2= 1  or = 1  in case <  or < .
T T

h i k i i h i k      

 

 The problem of reducing a linear functional system to a system containing fewer equations and unknowns was 

first studied by Serre [9].    Such a process is based on the application of the well known Quillen-Suslin Theorem.  

Theorem 1.1 [10, 11]  Let K  be a principal ideal domain and  1
= , ,

n
D K x x  and let 

q pR D   be a 

matrix which admits a right-inverse 
p q

R D


 , i.e., = qRR I . Then there exists a unimodular matrix ( )
p

N GL D  

such that  

 = 0 .
q

RN I
                                                                                  

(5) 

  2.  Reduction using Fuhrmann's Equivalence 

 The reduction of a multivariate polynomial matrix in the context of multidimensional systems theory was first 

studied by Frost and Boudellioua [12]. They obtained necessary and sufficient conditions under which a square 

multivariate polynomial matrix is unimodular equivalent to a simpler form. This corresponds to the reduction of a 

determined linear functional system into a single equation in one unknown function. Boudellioua and Quadrat [13] 

generalized this result to underdetermined systems using a module theoretic approach. Their result gives necessary and 

sufficient conditions for the reduction of a linear system to a system containing a single equation with several unknown 

functions. Boudellioua [14] generalized the earlier result to under-determined systems thereby giving necessary and 

sufficient conditions for the unimodular equivalence of an under-determined linear system to one containing a single 

equation involving only one unknown function. The results mentioned so far are based mainly on unimodular 

equivalence. This transformation has the disadvantage of establishing a connection between matrices and hence 

systems which have the same size. Boudellioua [15] used Fuhrmann's equivalence to reduce a class of determined 

linear functional systems to a system containing a single equation in one unknown. In this paper, we extend this latter 

result to the under-determined case. Before presenting the main result of this paper, we first state the following result 

which is a statement of the positive answer of the Lin-Bose conjecture [16]. This theorem which will be used later is 

given by Fabianska and Quadrat [17].  

Theorem 2.1 [Section 5 of [17] ]  Let =D  
1[ , , ]nK x x  be a commutative polynomial ring over a field K  

and 
q pR D   a full row rank matrix. Then the following two assertions are equivalent:   

    1.  The ideal ( )qI R  generated by the q q  minors of R  is principal, i.e. can be generated by the 

greatest common divisor   of these minors.  

    2.  There exist ,' q p '' q qR D R D   , and ( )pN GL D  such that:  

        = , det( ) = , = 0 .
'' ' '' '

q
R R R R R N I

          
 (6) 

Theorem 2.2  Let 
1= [ , , ]nD K z z  and 

q pT D  , >p q  with full row rank, then T  is Fuhrmann-

equivalent to the row vector 
1 ( 1)p qT D    :  

 = 0 .T 
                                                                                                          

(7) 

where D  is the gcd of the q q  minors of T , if and only if there exist a vector 
qU D  which admits a left 

inverse in D  such that the matrix  T U  has a right inverse over D  and the ideal generated by the q q  minors 

of T  is principal.  

  Proof. Let 
q pT D   and suppose that there exist a vector 

qU D  satisfying the given condition. Then by 

the Quillen-Suslin theorem there will exist a square ( 1) ( 1)p p    matrix 1( )pK GL D  such that  

   1

1

= 0
q

K

M N
T U I

X T

 
 
 

                                                                  (8) 

 where 
1 ( 1)

1

p qT D    . It follows from (8) that:  

                1 1
=TN UT           (9) 



REDUCTION OF LINEAR FUNCTIONAL SYSTEMS 

67 
 

where ,T U  are, by assumption, ZLC and 
1 1,T N  are ZRC (since 1( )pK GL D ). By virtue of Lemma 1.1 and 

Lemma 1.2, Fuhrmann's equivalence preserves the determinantal ideals and the invariant polynomials of the matrices. 

Hence the ideal generated by the elements of 
1T  is also principal and generated by the single polynomial  . Hence by 

virtue of the Lin-Bose Theorem 2.1, there exists a matrix 2 1( )p qN GL D   such that  

                                1 2 = 0 .T N T                                                                                 (10) 

 From which  

                                1 2 =TN N UT                                                                              (11) 

where again ,T U  are by assumption ZLC and 1 2,T N N  are ZRC, since  

                

11 2

2

1

= .
NN N

N
TT

  
  

   
                                                                    (12) 

 Now suppose that 
q pT D   is F-E with 

1 ( 1)p qT D    , then there exist matrices 
1 pN D   and 

( 1)p q pQ D     such that =NT TQ , where ,N T  are ZLC and ,T Q  are ZRC. By the Quillen-Suslin theorem, 

there exist ZRC matrices 
qU D  and 

( 1) 1p qY D     such that  

                                                                 

1
( )

p

T U
GL D

Q Y



 
 
 

                                                                  (13) 

where the matrices T and U must be ZLC.    
It is worth mentioning at this stage that finding a vector ,U D  when it exists, such that the condition in 

Theorem 2.2 is satisfied is not a straight forward task. On simple examples over a commutative polynomial ring 

1= [ , , ]nD K x x  with coefficients in a computable field K  (e.g., =K ), one may take a generic vector 

qU D  with a fixed total degree in the 
ix 's and compute the D -module  1 1 ( 1)/ ( )q p TD D T U  

 by means 

of a Gröbner basis computation and check whether or not this D -module vanishes on certain branches of the 

corresponding tree of integrability conditions (see Pommaret and Quadrat [18]) or on certain obstructions to genericity 

( see Levandoskyy and Zerz [19]). 

3.  Conclusion 

We have presented a constructive result for the simplification of a class of linear functional systems. More 

specifically, we have given necessary and sufficient conditions under which a rectangular multivariate polynomial 

matrix can be reduced by Fuhrmann's equivalence to a form that corresponds to the reduction of a linear functional 

system to a single equation with only one unknown function. The result can be easily implemented on a computer 

algebra system such as Maple using the OreModules package (see Chyzak et al. [20]).  
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