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ABSTRACT: Network-on-chip (NoC) multi-core architectures with a large number of processing elements are 

becoming a reality with the recent developments in technology. In these modern systems the processing elements 

are interconnected with regular NoC topologies such as meshes and tori. In this paper we propose a parallel Gauss-

Seidel (GS) iterative algorithm for solving large systems of linear equations on a 3-dimensional torus NoC 

architecture. The proposed parallel algorithm is O(Nn
2
/k

3
) time complexity for solving a system with a matrix of 

order n on a k×k×k 3D torus NoC architecture with N iterations assuming n and N are large compared to k. We 

show that under these conditions the proposed parallel GS algorithm has near optimal speedup. 
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 خوارزمية غاوس سيذال متوازية فعالة باستخذام شبكة تورس على رقاقة ثلاثية الأبعاد

 و محمذ طويق  دايخالذ 

أصبحج الأَظًت انًخعذدة انُٕاة راث انشبكت عهى سقاقت ٔاحذة ٔانخً ححخٕي عهى عذد كبٍش يٍ ٔحذاث انًعانجت حقٍقت ٔاقعٍت بفضم  :ملخص

ابك انخطٕساث انحذٌثت فً يجال انخكُٕنٕجٍا. فً ْزِ الأَظًت انًخطٕسة ٌخى سبظ ٔحذاث انًعانجت بشبكاث راث أشكال ُْذسٍت يُخظًت كشكم انخش

نحم أَظًت يعادلاث خطٍت راث أحجاو كبٍشة فً صيٍ يعانجت لا يخٕاصٌت حكشاسٌت خٕاسصيٍت غأس سٍذال . َقخشح فً ْزِ انٕسقت ٔشكم حٕسس

O(Nnحذٔد  صٌخجأ
2
/k

3
ٔعذد  k×k×kباسخخذاو شبكت حٕسس ثلاثٍت الأبعاد بحجى  nٔرنك نحم َظاو يعادلاث خطٍت ٌكٌٕ فٍٓا عذد انًعادلاث  (

انًخٕاصٌت انًقخشحت راث حسشٌع  خٕاسصيٍت. َبشٍْ أَّ فً ْزِ انحانت حكٌٕ انkكبٍشة يقاسَت بقًٍت  n  ٔNيع فشضٍت أٌ قٍى  Nحكشاس فً انخٕاسصيٍت 

 ٌكاد ٌكٌٕ الأيثم.

 

 .غأس سٍذالطشٌقت  ٔ يخٕاصٌت، َظاو يعادلاث خطٍت خٕاسصيٍتشبكت عهى سقاقت ٔاحذة، شكم حٕسس ثلاثً الأبعاد، : كلمات مفتاحية

1. Introduction 

n this paper we propose a parallel Gauss-Seidel algorithm based on message passing for solving a system of linear 

equations: Ax = b where A is an n by n dense matrix, b is a known n-vector and x is an n-vector to be determined. 

Systems of linear equations are of immense importance in mathematics, and to its applications to areas in the physical 

sciences, economics, engineering, social sciences and biological sciences, among many others.  Even complicated 

situations are frequently approximated by a linear model as a first step. The solution of a system of nonlinear equations 

is achieved by an iterative procedure involving the solution of a series of linear equations. Similarly, the solution of 

ordinary differential equations, partial differential equations and integral equations using the finite difference method 

leads to a system of linear or nonlinear equations. Linear equations also arise frequently in numerical analysis. 

There are two classes of methods for solving linear systems of equations: direct and iterative methods. A direct method 

is a fixed number of operations carried out once, at the end of which the solution is produced. Gauss elimination and 

related strategies on a linear system is an example of such methods. Direct methods are often too expensive in terms of 

computation time, memory requirements, or both. As an alternative, linear systems are usually solved with iterative 

methods. A method is called iterative when it consists of a basic series of operations which are carried out over and 

over again until the answer is produced, some exception error occurs, or a limit on the number of iterations is exceeded 

[1]. 

For early parallel computers such as the CM-2 and the Intel iPSC/860 [2], it was observed that the single iteration 

steps of most iterative methods offered too little opportunity for parallelism in comparison with, for instance, direct 

methods for dense matrices. In particular, the inner products required per iteration for many iterative methods were 
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identified as obstacles because of communication. This has led to attempts to combine iteration steps, or to combine the 

message passing for different inner products. 

The Gauss-Seidel is one of the most efficient iterative methods for solving linear systems that arise in solving 

partial differential equations. Many parallel implementations have been proposed including those reported in [3-8]. 

Some implementations have been developed for regular problems such as the Laplace equation [9, 10], circuit 

simulation problems [11], power load-flow problems [12], and for many applications of inter-dependent constraints, or 

as a relaxation step in multi-grid methods [3].  In [13] several parallelization strategies for the dense Gauss-Seidel 

method are presented. These strategies are compared and evaluated through performance measurements on a large 

range of hardware architectures. The authors found that these new architectures do not offer the same trade-off in terms 

of computation power versus communication and synchronization overheads as do traditional high-performance 

platforms. In 1999, Wang and Xu [14] presented a specific technique for solving convection-dominated problems. 

Their algorithm uses crosswind thin blocks in a block Gauss-Seidel method. Their method is based on a special 

partitioning technique for a block iterative method for solving the linear system derived from a monotone discretization 

scheme for convection diffusion problems. They conclude that crosswind grouping is essential for the rapid 

convergence of the method. In 2005, Grabel et al. [15] presented two simple techniques for improving the performance 

of the parallel Gauss-Seidel method for the 3D Poisson equation by optimizing cache usage as well as reducing the 

number of communication steps. 

In 2006, Nobuhiko et al. [16] presented a novel parallel algorithm for the block Gauss-Seidel method. The 

algorithm is devised by focusing on Reitzinger's coarsening scheme for those linear systems derived from the finite 

element discretization with first order tetrahedral elements. 

The time consumed on communication between processors limits the parallel computation speed. With advances 

in technology, chips with a large number of cores (processing elements) are becoming a reality. Communication 

between processing elements in such multi-core systems was initially based on buses. When the number of cores 

increased, the bus became a performance bottleneck. In recent years, networks-on-chip (NoCs) have been used instead 

of buses for interconnecting the on-chip processing elements, which has resulted in faster inter-processor 

communication. The topology of the network-on-chip has a major impact on the communication performance of the 

multi-core system [17].  

Several topologies have been proposed and studied for NoCs including mesh-based and tree-based topologies 

[17]. The emerging three-dimensional (3D) integration and process technologies allow the design of multi-level 

Integrated Circuits (ICs). This creates new design opportunities in NoC design. For example, a considerable reduction 

can be achieved in the number and length of global interconnections using three-dimensional integration. 

Motivated by these new developments in technology and by the resulting improved performance of inter-

processor communication on modern 3D network-on-chip systems, we propose, and analyze the complexity of, a new 

parallel implementation of the Gauss-Seidel algorithm on 3D torus NoC architectures. The proposed algorithm uses 

message passing for inter-processor communication. It is an extension of our previous similar algorithm on 2D torus 

NoC [18]. A shorter version of this paper has been presented in [19]. 

The rest of the paper is structured as follows: in section 2 an introduction is presented including a description of 

the sequential Gauss-Seidel algorithm to be parallelized, as well as an introduction to the 3D torus NoC architecture. 

We describe the proposed parallel algorithm in section 3, and we evaluate its performance in section 4. The paper is 

concluded in section 5. 

2. Preliminaries 

a. The Gauss-Seidel sequential agorithm 

The Gauss-Seidel (GS) algorithm is an improvement of the Jacobi algorithm. GS corrects the i
th

 component 
)(m

ix  

of the vector x
(m)

 in the order i = 0, 1, …., n-1. The approximation solution is updated immediately after the new 

component is determined. The newly computed component
)1( m

ix  can be changed within a working vector which is 

redefined at each relaxation step, and this results in the following iterative formula [10]:  
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In matrix notation, equation (2) becomes: 

0,)( )()1(   mbUxxLD mm .              (2) 

 In (2) L, D, and U are the lower, diagonal, and upper triangular parts of matrix A respectively. Figure 1 outlines the 

sequential GS algorithm.  
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Figure 1. The sequential Gauss-Seidel algorithm. 

 

It is well known that the GS algorithm will always converge if the matrix A is strictly or irreducibly diagonally 

dominant. The sequential GS algorithm has time complexity O(Nn
2
) for N iterations and therefore requires large 

execution time for large problem sizes (n), hence the need for faster parallel implementations. 

b. The 3D torus network-on-chip architecture 

An n-dimensional torus network, also called a wrap-around mesh or toroidal network, is a Cartesian product of n 

cycle networks. Two-dimensional mesh-based topologies (such as 2D mesh and 2D torus) have been the most popular 

among the known NoC topologies. Their popularity is due to their modularity (they are easily expandable by adding 

new nodes and links without modifying the existing structure), their ability to be partitioned into smaller meshes, their 

simple XY routing strategy, and their facilitated implementation. They also have a regular structure and short inter-

switch wires. They have been used in several chip multiprocessors such as the RAW processor [20], the TRIPS 

processor [21], the Intel 80-core Terascale processor [22], the 100-core TILE-Gx100 processor from Tilera [23] and 

the Single-Chip Cloud Computer (SCC) of Intel [24]. 

The emerging three-dimensional (3D) integration and process technologies allow the design of multi-level 

Integrated Circuits (ICs) [25]. This creates new opportunities in NoC design [26, 27]. For example, a considerable 

reduction can be achieved in the number and length of global interconnections using three-dimensional integration. 3D 

NoCs are more advantageous than 2D NoCs in providing better performance for large multi-core systems [28]. Long 

horizontal wires in 2D NoCs can be replaced by very short vertical links in 3D NoCs. 

Despite being available for quite a while, the 3D torus architecture now has the potential to be one of the most 

attractive interconnection topologies for future large NoC systems. This is because nowadays severe challenges are 

faced due to the rising number of cores (nodes). Petascale and exascale installations require, and will require, hundreds 

or thousands of cores to efficiently work together. The 3D torus topology offers the ability to add nodes without 

affecting performance and reliability. It is also important for future large multi-core systems to consume less energy. 

Connecting nodes using a 3D torus topology means that each node is connected to the adjacent ones via short cabling 

(except for the wrap-around links) in 6 different “directions”: X+, X-, Y+, Y-, Z+, Z-. The pair-wise connectivity 

between nearest neighbor nodes of a 3D torus helps to reduce energy consumption and communication latency. A 3-

dimesional torus interconnection topology is illustrated in Figure 2. 

 

Sequential GS Algorithm 

{ Input A, b, x, tolerance, N   

for m = 0, 1, …, N 

{ for i = 0,…, n-1 

{ sum = 0 

for j = 0, 1, …., i-1 

sum = sum +  

for j = i+1,…, n-1 

sum = sum +  

 

} 

if ( )   

{ output the solution  

exit 

} 

= 
 

} 

} 
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Figure 2. The 3D torus NoC topology. 

3. The proposed parallel GS algorithm 

In our proposed parallel GS algorithm, we partition the n×n matrix A into blocks of n/k
3
 columns each, and 

scatter them to the k
3
 processors of a k×k×k 3D torus. The k

3
 processors are identified by (x, y, z) coordinates, 0 ≤ x, y, z 

≤ k-1, as illustrated in Figure 2. Processor (x, y, z) is connected to the six neighboring processors (x-1, y, z), (x+1, y, z), 

(x, y-1, z), (x, y+1, z), (x, y, z-1) and (x, y, z+1). The +1 and -1 operations in these expressions are modulo k in order to 

include the wrap-around links.  

We also assign sequential processor numbers (ids) to the k
3
 processors as follows: the processor whose 

coordinates are (x, y, z) is assigned the sequential id: id(x, y, z) = x + ky + k
2
z. In this way, the k

3
 processors are also 

identified with sequential ids in the range 0 ... k
3
-1 as illustrated in Figure 3. 

 

 

Figure 3. Sequential ids of the processors in plane z = 0. 

Figure 4 outlines the steps of the proposed parallel GS algorithm. Given the problem inputs A, b, x and tolerance, 

processor 0 (the master processor) partitions matrix A into blocks of n/k
3
 columns each, and scatters them to the 

processors. Processor  r  receives the r
th

 block of the matrix containing the aij elements for i and j in the ranges: 0 ≤ i < 

n and r(n/k
3
) ≤ j ≤ (r+1)(n/k

3
)-1, respectively. Then processor 0 scatters the elements of the vector x to the processors. 

Processor Pr receives the r
th

 segment of n/k
3
 elements of the vector x, i.e. the xj elements for j in the range r(n/k

3
) ≤ j ≤ 

(r+1)(n/k
3
)-1. After scattering A and x, processor 0 broadcasts the value of tolerance to all processors. The rest of the 

algorithm is similar to the sequential algorithm, in except that the loop for calculating and summing the aijxj’s is done 

in parallel by the k
3
 processors. Processor number r calculates the partial sum of the aijxj’s,  j = r(n/k

3
), …,(r+1)(n/k

3
)-1, 

corresponding to the r
th

 block of matrix A and the r
th

 segment of vector x received by this processor. The partial sums 

are then collected and summed (reduce-sum) at processor 0, which completes the calculation of the new xi element. 

Processor 0 then sends the new xi to the processor in charge of xi, that is Pi/(n/k
3
).  

x

y 
z

   0    1    2     k-1 

k k+1 k+2 2k-1 

2k 2k+1 2k+2 3k-1 

(k-1)k+1 k2-1 (k-1)k (k-1)k+2 
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Figure 4. The proposed parallel Gauss-Seidel algorithm. 

 

Notice that this parallel GS algorithm is based on parallelizing the calculation of sum inside the inner loop of the 

sequential algorithm (Figure 1). Each processor is in charge of a distinct block of columns of matrix A and of  a distinct 

segment of vector x elements, allowing it to contribute to summing the aijxj’s in a distinct range of j. More precisely, 

processor Pr (i.e. with sequential id r) is in charge of the j range: r (n/k
3
) ≤ j ≤ (r+1)(n/k

3
)-1. The partial sums 

calculated in parallel by the different processors are gathered by the master, forcing all processors to synchronize at 

this point before proceeding to the next i iteration. This yields a correct parallelization of the calculation of sum of the 

sequential algorithm. 

4. Analysis of the parallel GS algorithm 

Table 1 outlines timing expressions for the various steps of the parallel GS algorithm of Figure 4. We assume it 

takes an amount of time tcopy to copy the value of a real number from one memory location to another, tmultiply to 

multiply two real numbers, tadd to add two real numbers, and tsqrt to calculate the square root of a real number. 

Expressions for tbroadcast,  tscatter, and treduce-sum which correspond to the time required for group communication 

operations (broadcast, scatter, reduce-sum) in the k×k×k torus will be derived later in this section. 

 

 

Parallel_GS Algorithm 

{ //Let r be the sequential id of local processor (0 ≤ r < k
3
) 

if (r = 0) //master processor 

{ Input A, b, x, tolerance 

Partition A into k
3
 blocks of n/k

3
 columns each 

Scatter the blocks of columns of A to the k
3
 processors 

Partition x into k
3
 segments of n/k

3
 elements each 

Scatter the segments of elements of x to the processors 

} else 

{ Receive the r
th

 block of n/k
3
 columns of A 

Receive the r
th

 segment of n/k
3
 elements of x 

} 

for m = 0, 1, …,  N 

{ if (r = 0) oldx = x 

for i= 0,…, n-1 

{ Sr = 0 

for j = r(n/k
3
), …, (r+1)(n/k

3
)-1 

Sr = Sr +  

if (r = 0) 

{ Gather and sum the partial sums:  

 

Send xi to processor Pi/(n/k
3

) 

} 

else  

{ Send partial sum Sr to processor  0 (contribute to gather) 

if (r = i/(n/k
3
) ) receive xi 

} 

} 

if (r = 0) and (||x-oldx|| < tolerance) terminate computation 

} 

} 
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Table 1. Complexity of the parallel GS algorithm. 

 

Algorithm Step Time Complexity 

1. Scatter the blocks of columns of A T1 = tscatter(n
2
) = O(n

2
k) 

2. Scatter the segments of vector x T2 = tscatter(n) = O(nk) 

3. Broadcast tolerance T3 = tbroadcast(1) = O(k) 

4. Save old x T4 = ntcopy = O(n) 

5. Calculate the Sr partial sums T5 = (n/k
3
)(tmultiply + tadd) = O(n/k

3
) 

6. Reduce-sum the Sr partial sums T6 = treduce-sum = O(k) 

7. Calculate xi T7 = 2(tmultiply + tadd) = O(1) 

8. Send xi to processor i/(n/k
3
) T8 = tsend(1) = O(k) 

9. Termination Test T9 = n(2 tadd + tmultiply) + tsqrt = O(n) 

 

It can be seen from Figure 4 that the total time required by the parallel GS algorithm is given by: 

Ttotal = T1+T2+T3+N[T4+n(T5+T6+T7+T8)+T9]    (3) 

It remains to derive expressions for tbroadcast, tscatter, and treduce-sum which correspond to the timing on the 3D torus of 

the group communication operations broadcast, scatter, and reduce-sum respectively. 

a. The cost of broadcasting on the 3D torus 

The broadcasting of a message of size s from a source node to all other nodes in the k×k×k torus can be done in 

time:  

  combroadcast tskst ..2/3)(  , where tcom is the time needed to send a single number from one processor to a 

neighboring processor in the k×k×k torus. This expression is justified as follows: broadcasting in the k×k×k torus can 

be done in three phases as illustrated in Figure 5. In the first phase, the message is propagated on the X dimension in 

both directions (X+ and X-), starting at the source node and making use of the wrap-around links on the X dimension if 

needed. This X broadcasting phase requires  2/k  communication steps. 

 

Figure 5. Broadcasting on the 3D torus in 3 phases. 

 

In the second phase of the broadcasting, all the nodes which received the message during the first phase (the nodes 

located on the source row) initiate parallel propagations of the message across the Y dimension in both directions (Y+ 

and Y-), making use of the wrap-around links on the Y dimension if needed. This phase also requires  2/k  single-

hop communication steps.  

In the third phase of the broadcasting, all the nodes which received the message during the first and second 

phases (i.e. all the nodes located on the source plane) initiate parallel propagations of the message across the Z 

dimension in both directions (Z+ and Z-), making use of the wrap-around links on the Z dimension if needed. This 

third phase also requires  2/k  single-hop communication steps. The total time required by this broadcasting 

algorithm is therefore:   )(2/3)( skstkst combroadcast  . Figure 6 shows an implementation of this broadcasting 

algorithm on the k×k×k torus. 
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Broadcast(M, source = (xs, ys, zs)) 

{ //let local = (clocal, ylocal, zlocal) 

 if (local = source) 

 { send M to (xlocal + 1, ylocal, zlocal) 

  send M to (xlocal - 1, ylocal, zlocal) 

  send M to (xlocal, ylocal + 1, zlocal) 

  send M to (xlocal, ylocal - 1, zlocal) 

  send M to (xlocal, ylocal, zlocal + 1) 

  send M to (xlocal, ylocal, zlocal - 1) 

 } 

 else 

 { receive M    //let sender = (xsender, ysender, zsender) 

 if(ylocal = ysource) and (zlocal = zsource) // phase 1 

  {  if(xsender = xlocal – 1) 

 send M to (xlocal + 1, ylocal, zlocal) 

   else send M to (xlocal - 1, ylocal, zlocal) 

 send M to (xlocal, ylocal + 1, zlocal)  

 send M to (xlocal, ylocal - 1, zlocal)  

 send M to (xlocal, ylocal, zlocal + 1)  

 send M to (xlocal, ylocal, zlocal - 1)  

  } 

 else if (zlocal = zsource) // phase 2 

 if(ysender = ylocal – 1)  

 send M to (xlocal, ylocal + 1, zlocal)  

 else send M to (xlocal, ylocal - 1, zlocal)  

  send M to (xlocal, ylocal, zlocal + 1) 

  send M to (xlocal, ylocal, zlocal - 1)  

  else // phase 3 

 if(zsender = zlocal – 1)  

  send M to (xlocal, ylocal, zlocal + 1)  

 else send M to (xlocal, ylocal, zlocal - 1)  

 } 

} 

 

 

Figure 6. Implementation of the 3D torus broadcasting algorithm. 

 

b. The cost of scattering on the 3D torus  
 

Similarly to broadcasting, scattering a message of size M in the k×k×k 3D torus (each processor will receive one chunk 

of the message of size M/k
3
) can also be done in three phases, except that not the whole message propagates in the 

three phases. During the first phase, when a node receives a message, it extracts its part of size M/k (to be scattered 

across the Y dimension during the second phase) and divides the remaining part into two equal parts and sends one of 

them to the X+ neighbor and the other to the X- neighbor. The sizes of the messages propagated in this way on the X 

dimension are therefore successively: (M-M/k)/2 = M(k-1)/2k, M(k-3)/2k, M(k-5)/2k, …, and M(k-(k-2))/2k = M/k, 

assuming without loss of generality that k is odd. The time for the first phase of the scatter operation is therefore: 

8/)2...)3()1(()2/( comcom MktkktkM  . 

 

During the second phase of the scatter operation, the same steps can be followed across the Y dimension starting at 

the processors of the source row, each with an initial message of size M’ = M/k. Using the same analysis as of the first 

phase yields the timing expression M’ktcom/8 = Mtcom/8 for the second phase. A similar calculation gives the timing 

expression Mtcom/8k for the third phase. The total time for the scatter operation is therefore tscatter(M) = 

M(k+1+1/k)tcom/8 = O(Mk).  

 

c. The cost of reduce-sum on the 3D torus  
 

The reduce-sum group communication operation is the operation of gathering while summing a set of numbers 

initially scattered at all processors (one number per processor). The final sum is collected at one sink processor. This 
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operation is needed in the parallel GS algorithm to collect and sum up the Sr partial sums. It can be done by reversing 

the three phases of the broadcasting operation. During the first phase, partial sums across dimension Z are calculated in 

parallel by a sequence of summing and sending on the Z+ or Z- direction (whichever is closer) to the sink plane. This 

yields a set of partial sums stored at the processors of the sink plane. During the second phase, the processors on the 

sink plane calculate partial sums across dimension Y in parallel by a sequence of summing and sending on the Y+ or 

Y- direction (whichever is closer) to the sink row.  This yields a set of partial sums stored at the processors of the sink 

row. The processors on the sink row then calculate the final sum by a sequence of summing and sending on the X+ or 

X- direction (whichever is closer) to the sink processor. The final sum will be stored at the sink processor. Each of the 

three phases requires  2/k  steps of summing and sending. The resulting total time of the Reduce-Sum operation is 

therefore:   )()(2/3_ kttkt addcomsumreduce  . 

 

d. Overall cost of the parallel GS algorithm  
 

Notice that T1, T2, T3, T6, and T8 in expression (3) of the total execution time of the parallel GS algorithm 

correspond to communication steps, while T4, T5, T7 and T9 correspond to computation steps. Using the obtained timing 

expressions of the broadcasting, scattering and reduce-sum operations, the total communication time Tcomm is given by 

the following:  

 

Tcomm = T1 + T2 + T3 + Nn[T6 + T8] = O((kn
2
 + Nnk)tcom) 

 

Notice that Tcomm is proportional to tcom (the single hop communication cost) which is much faster on NoC 

networks than on cluster or multiprocessor networks. Therefore the proposed parallel GS algorithm runs faster on a 

NoC than on a loosely coupled cluster or a tightly coupled multiprocessor. 

The total computation time Tcomp is given by: 

 

Tcomp = N[T4+n(T5 + T7)+T9] = O(Nn
2
/k

3
) 

 

The complexity of the total execution time Ttotal of the parallel GS algorithm is therefore: 

 

Ttotal = Tcomm + Tcomp = O(kn
2
 + Nnk + Nn

2
/k

3
)    (4) 

 

When the size of the linear system n and the number of iterations N are large compared to the number of 

processors k
3
 (in the order of k

4
 or larger), the total execution time Ttotal of the parallel GS algorithm in expression (4) is 

dominated by the term Nn
2
/k

3 
which is k

3
 times smaller than the time of the sequential algorithm. We can therefore 

conclude that, when the problem size n and the number of iterations N are large compared to k, the proposed parallel 

GS algorithm has a near optimal speedup (nearly equal to the number of processors k
3
) and hence a near optimal 

efficiency. Remember that the speedup of a parallel algorithm is defined as the time of the sequential algorithm divided 

by the time of the parallel algorithm, while the efficiency is defined as the speedup divided by the number of 

processors. Figures 7 and 8 illustrate how the speedup and efficiency increase as n and N increase. 

 

 

   
Figure 7.  Speedup and efficiency of the parallel GS algorithm as a function of n. 
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Figure 8. Speedup and efficiency of the parallel GS algorithm as a function of N. 

5. Conclusion 

We have proposed a parallel Gauss-Seidel iterative algorithm for solving large systems of linear equations on a 

3D torus network-on-chip architecture. The proposed algorithm makes use of the X, Y, Z interconnects with wrap-

around links of the 3D torus for efficient group communication operations between the processors including 

broadcasting, scattering and reduce-sum operations. These efficient group communication operations are at the heart of 

the proposed algorithm. We have shown that the proposed parallel algorithm has near optimal speedup when solving 

large linear systems that require a large number of iterations. This work can be extended by an experimental or 

simulation-based performance evaluation of the proposed parallel algorithm. 
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