A Unique Common Coupled Fixed Point Theorem for Four Maps in Partial b-Metric-Like Spaces

Mohammad S. Khan, Konduuru P.R. Rao and Kandipalli V.S. Parvathi

1Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, P.O. Box 36, PC 123, Al-Khod, Muscat, Sultanate of Oman. 2Department of Mathematics, Acharya Nagarjuna University, Nagarjuna Nagar -522 510, A.P., India. 3Department of Applied Mathematics, Krishna University-M.R.Appa Row P.G.Center, Nuzvid-521 201, Andhra Pradesh, India. *Email: mohammad@squ.edu.om.

ABSTRACT: We prove the existence of a unique common coupled fixed point theorem for four mappings satisfying a general contractive condition on partial b-metric-like spaces. We also give an example to illustrate our main theorem. Our theorem generalizes and improves the theorem of [1].

Keywords: b-Metric-like space; Coupled fixed point; w-Compatibility maps.

1. Introduction and Preliminaries

The concept of b-metric space was introduced by Czerwik [2] as follows:

Definition 1.1 [2]: A b-metric on a non-empty set X is a function d : X × X → [0, ∞) such that for all x, y, z ∈ X and a constant k ≥ 1 the following three conditions hold true:

(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x),
(iii) d(x, y) ≤ k[d(x, z) + d(z, y)] .

The triad (X, d, k) is called a b-metric space.

Alghamdi et al. [3] introduced the concept of b-metric-like spaces and proved some fixed point theorems for a single map.

Definition 1.2 [3]: A b-metric-like on a non-empty set X is a function d : X × X → [0, ∞) such that for all x, y, z ∈ X and a constant k ≥ 1 the following three conditions hold true:

(i) d(x, y) = 0 implies x = y,
(ii) d(x, y) = d(y, x),
(iii) d(x, y) ≤ k[d(x, z) + d(z, y)] .

The triad (X, d, k) is called a b-metric-like space.

Mathews [4] introduced the concept of a partial metric space as follows:

Definition 1.3 [4]: A mapping p : X × X → [0, ∞), where X is a non-empty set, is said to be a partial metric on X if for any x, y, z ∈ X the following are satisfied:

(i) x = y if and only if p(x, x) = p(x, y) = p(y, y),
(ii) p(x, y) ≤ p(x, y),
(iii) p(x, y) = p(y, x),
(iv) \(p(x, y) \leq p(x, z) + p(z, y) - p(z, z) \).

The pair \((X, p)\) is called a partial metric space.

Now we give the following definition by combining the Definitions 1.2 and 1.3.

Definition 1.4: A partial b-metric-like on a non-empty set \(X\) is a function \(p : X \times X \to [0, \infty)\) such that for all \(x, y, z \in X\) and a constant \(k \geq 1\) the following are satisfied:

\begin{enumerate}
 \item \(p(x, y) = 0 \) implies \(x = y \),
 \item \(p(x, x) \leq p(x, y) \), \(p(y, y) \leq p(x, y) \),
 \item \(p(x, y) = p(y, x) \),
 \item \(p(x, y) \leq k[p(x, z) + p(z, y) - p(z, z)] \).
\end{enumerate}

The triad \((X, p, k)\) is called a partial b-metric-like space.

Definition 1.5: Let \((X, p, k)\) be a partial b-metric-like space and let \(\{x_n\}\) be a sequence in \(X\) and \(x \in X\). The sequence \(\{x_n\}\) is said to be convergent to \(x\) if

\[\lim_{n \to \infty} p(x_n, x) = p(x, x). \]

Definition 1.6: Let \((X, p, k)\) be a partial b-metric-like space.

(i) A sequence \(\{x_n\}\) in \((X, p, k)\) is said to be a Cauchy sequence if

\[\lim_{n, m \to \infty} p(x_n, x_m) \]

exists and is finite.

(ii) A partial b-metric-like space \((X, p, k)\) is said to be complete if every Cauchy sequence \(\{x_n\}\) in \(X\) converges to a point \(x \in X\) so that

\[\lim_{n, m \to \infty} p(x_n, x_m) = p(x, x) = \lim_{n \to \infty} p(x_n, x). \]

One can prove easily the following remark.

Remark 1.7: Let \((X, p, k)\) be a partial b-metric-like space and \(\{x_n\}\) be a sequence in \(X\) such that \(\lim_{n \to \infty} p(x_n, x) = 0\). Then

(i) \(x\) is unique,

(ii) \(\frac{1}{k} p(x, y) \leq \lim_{n \to \infty} p(x_n, y) \leq k p(x, y) \) for all \(y \in X\),

(iii) \(p(x_n, x_0) \leq k p(x_0, x_1) + k^2 p(x_1, x_2) + \cdots + k^{n-1} p(x_{n-2}, x_{n-1}) + k^n p(x_{n-1}, x_n) \) whenever \(\{x_n\} \in X \).

Let \((X, p, k)\) be a partial b-metric-like space and \(F, G : X \times X \) and \(f, g : X \to X\). For \(x, y, u, v \in X\), we denote

\[M_{x, y}^{u, v} = \min \left\{ \frac{1}{2k} [p(fx, gu) + p(fy, gv)], \frac{1}{2k} [p(gu, F(x, y)) + p(gv, G(y, x))], \frac{1}{2k} [p(fx, G(u, v)) + p(fy, F(y, x))], \frac{1}{2k} [p(gu, F(x, y)) + p(gv, G(y, x))] \right\}. \]

and

\[m_{x, y}^{u, v} = \max \left\{ \frac{1}{k} p(fx, gu), \frac{1}{k} p(fy, gv), \frac{1}{k} p(gu, F(x, y)), \frac{1}{k} p(gv, G(y, x)) \right\}. \]

Recently Bhaskar and Lakshmikantham \[5\] introduced the concept of coupled fixed point and discussed some problems of the uniqueness of a coupled fixed point and applied their results to the problems of the existence and uniqueness of a solution for the periodic boundary value problems. Later Lakshmikantham and Ciric \[6\] proved some coupled coincidence and coupled common fixed point results in partially ordered metric spaces.
A UNIQUE COMMON COUPLED FIXED POINT THEOREM

Definition 1.8 [6] An element \((x, y) \in \mathbb{X} \times \mathbb{X}\) is called
(i) a coupled coincident point of mappings \(F : \mathbb{X} \times \mathbb{X} \to \mathbb{X}\) and \(g : \mathbb{X} \to \mathbb{X}\) if \(gx = F(x, y)\) and \(gy = F(y, x)\).
(ii) a common coupled fixed point of mappings \(F : \mathbb{X} \times \mathbb{X} \to \mathbb{X}\) and \(g : \mathbb{X} \to \mathbb{X}\) if \(x = gx = F(x, y)\) and \(y = gy = F(y, x)\).

Definition 1.9 [7] The mappings \(F : \mathbb{X} \times \mathbb{X} \to \mathbb{X}\) and \(g : \mathbb{X} \to \mathbb{X}\) are called \(w\)-compatible if \(g(F(x, y)) = F(gx, gy)\) and \(g(F(y, x)) = F(gy, gx)\), whenever \(gx = F(x, y)\) and \(gy = F(y, x)\).

Recently, Abbas et al. [8] proved a common fixed point theorem for two maps of Jungck type satisfying generalized condition (B) in metric spaces (See Theorem 2.2, [8]). As a generalization of Theorem 2.2 of [8], Kaewcharoen et al. [1] obtained a common fixed point theorem for four maps satisfying a generalized condition in partial metric spaces.

In this paper, we obtain the existence of a unique common coupled fixed point theorem for four mappings satisfying a general contractive condition on partial b-metric-like spaces. We also give an example to illustrate our main theorem. Our theorem generalizes and improves the theorems of [1] and [8].

2. Main Result

Theorem 2.1: Let \((\mathbb{X}, p, k)\) be a complete partial b-metric-like space, \(F, G : \mathbb{X} \times \mathbb{X} \to \mathbb{X}\) and \(f, g : \mathbb{X} \to \mathbb{X}\) be mappings satisfying
\[
(2.1.1) \quad F(\mathbb{X} \times \mathbb{X}) \subseteq g(\mathbb{X}) \supseteq f(\mathbb{X}), \quad G(\mathbb{X} \times \mathbb{X}) \subseteq f(\mathbb{X}),
\]
\[
(2.1.2) \quad k p(F(x, y), G(u, v)) \leq \delta \frac{M_{x, y}}{m_{x, y}} + L
\]
for all \(x, y, u, v \in \mathbb{X}\), where \(\delta > 0\) and \(L \geq 0\), \(k < 1\), where \(L = \max \left\{ \frac{L}{1 - \delta} \right\} \).
\[
(2.1.3) \quad f(\mathbb{X}) \text{ or } g(\mathbb{X}) \text{ is closed},
\]
\[
(2.1.4) \quad \text{the pairs } (F, f), \text{ and } (G, g) \text{ are } w\text{-compatible}.
\]
Then \(F, G, f\) and \(g\) have a unique common coupled fixed point.

Proof. Let \((x_0, y_0) \in \mathbb{X} \times \mathbb{X}\). Since \(F(\mathbb{X} \times \mathbb{X}) \subseteq g(\mathbb{X})\), there exist \(x_1, y_1 \in \mathbb{X}\) such that \(gx_1 = F(x_0, y_0)\) and \(gy_1 = F(y_0, x_0)\). Since \(G(\mathbb{X} \times \mathbb{X}) \subseteq f(\mathbb{X})\), there exist \(x_2, y_2 \in \mathbb{X}\) such that \(fx_2 = G(x_1, y_1)\) and \(fy_2 = G(y_1, x_1)\). Continuing this process, we construct sequences \(\{x_n\}\) and \(\{y_n\}\) in \(\mathbb{X}\) such that
\[
gx_{2n+1} = F(x_{2n}, y_{2n}) = z_{2n},
gy_{2n+1} = F(y_{2n}, x_{2n}) = w_{2n},
fx_{2n+2} = G(x_{2n+1}, y_{2n+1}) = z_{2n+1},
fy_{2n+2} = F(y_{2n+1}, x_{2n+1}) = w_{2n+1}, \quad n = 0, 1, 2, 3, \ldots
\]
Now consider
\[
p(z_{2n}, z_{2n+1}) \leq k p(F(x_{2n}, y_{2n}), G(x_{2n+1}, y_{2n+1}))
\]
\[
\leq \delta M_{x_{2n}, y_{2n}}^{z_{2n}, z_{2n+1}} + L m_{x_{2n}, y_{2n}}^{z_{2n}, z_{2n+1}}
\]
where
\[
M_{x_{2n}, y_{2n}}^{z_{2n}, z_{2n+1}} = \max \left\{ \begin{array}{l}
p(z_{2n-1}, z_{2n}), \quad p(w_{2n-1}, w_{2n}), \quad p(z_{2n-1}, z_{2n}), \quad p(w_{2n-1}, w_{2n}), \quad p(z_{2n-1}, z_{2n}), \\
\frac{1}{2k}[p(z_{2n-1}, z_{2n}) + p(z_{2n}, z_{2n})], \quad \frac{1}{2k}[p(w_{2n-1}, w_{2n}) + p(w_{2n}, w_{2n})]
\end{array} \right\}
\]
\[
\leq \max \left\{ \begin{array}{l}
p(z_{2n-1}, z_{2n}), \quad p(w_{2n-1}, w_{2n}), \quad p(z_{2n-1}, z_{2n}), \\
p(z_{2n}, z_{2n}), \quad p(w_{2n}, w_{2n})
\end{array} \right\}
\]
from \(k \geq 1\) and from \((p_4)\).
\[m_{z_{m}, z_{m}} = \min \{ \frac{1}{k} \left(\begin{array}{c}
p(z_{2n}, z_{2n}), p(w_{2n}, w_{2n}) \\
p(z_{2n-1}, z_{2n-1}), p(w_{2n-1}, w_{2n-1}) \\
n - n - \end{array} \right) \} \]

\[\leq \min \{ \sum_{i=1}^{m} \left(\begin{array}{c}
p(z_{2n}, z_{2n}), p(w_{2n}, w_{2n}) p(z_{2n}, z_{2n}) \\
p(z_{2n-1}, z_{2n-1}), p(w_{2n-1}, w_{2n-1}) + p(z_{2n-1}, z_{2n-1}) \\
n - n - \end{array} \right) \} \]

\[= \min \{ p(z_{2n}, z_{2n}), p(w_{2n}, w_{2n}) \} \text{ from (p3)} \]
\[\leq \max \{ p(z_{2n}, z_{2n}), p(w_{2n}, w_{2n}) \} \]
\[\leq \max \{ p(z_{2n}, z_{2n}), p(w_{2n}, w_{2n}) \} \text{ from (p3).} \]

Thus
\[p(z_{2n}, z_{2n}) \leq \delta \max \left\{ p(z_{2n}, z_{2n}), p(w_{2n}, w_{2n}) + L \max \{ p(z_{2n}, z_{2n}), p(w_{2n}, w_{2n}) \} \right\} \]

Similarly
\[p(w_{2n}, w_{2n}) \leq \delta \max \left\{ p(z_{2n}, z_{2n}), p(w_{2n}, w_{2n}) + L \max \{ p(z_{2n}, z_{2n}), p(w_{2n}, w_{2n}) \} \right\} \]

Thus
\[\max \left\{ p(z_{2n}, z_{2n}), p(w_{2n}, w_{2n}) \right\} \leq \delta \max \left\{ p(z_{2n}, z_{2n}), p(w_{2n}, w_{2n}) + L \max \{ p(z_{2n}, z_{2n}), p(w_{2n}, w_{2n}) \} \right\} \]

If
\[\max \left\{ p(z_{2n}, z_{2n}), p(w_{2n}, w_{2n}) \right\} \leq \max \left\{ p(z_{2n}, z_{2n}), p(w_{2n}, w_{2n}) \right\}, \]

then from (2)
\[\max \{ p(z_{2n}, z_{2n}), p(w_{2n}, w_{2n}) \} \leq \frac{L}{1 - \delta} \max \{ p(z_{2n}, z_{2n}), p(w_{2n}, w_{2n}) \}. \]

If
\[\max \left\{ p(z_{2n}, z_{2n}), p(w_{2n}, w_{2n}) \right\} \leq \max \left\{ p(z_{2n}, z_{2n}), p(w_{2n}, w_{2n}) \right\}, \]

then from (2)
\[\max \{ p(z_{2n}, z_{2n}), p(w_{2n}, w_{2n}) \} \leq (\delta + L) \max \{ p(z_{2n}, z_{2n}), p(w_{2n}, w_{2n}) \}. \]

Hence
\[\max \{ p(z_{2n}, z_{2n}), p(w_{2n}, w_{2n}) \} \leq l \max \{ p(z_{2n}, z_{2n}), p(w_{2n}, w_{2n}) \} \]

where
\[l = \max \left\{ \frac{L}{1 - \delta} + L \right\} < 1. \]

Similarly we can show that
\[\max \{ p(z_{2n-1}, z_{2n-1}), p(w_{2n-1}, w_{2n-1}) \} \leq l \max \{ p(z_{2n-1}, z_{2n-1}), p(w_{2n-1}, w_{2n-1}) \}. \]

Hence
\[\max \{ p(z_{n}, z_{n}), p(w_{n}, w_{n}) \} \leq l \max \{ p(z_{n-1}, z_{n-1}), p(w_{n-1}, w_{n-1}) \}, \quad n = 1, 2, 3, \ldots \]

Thus
\[\max \{ p(z_{n}, z_{n}), p(w_{n}, w_{n}) \} \leq l^h \max \{ p(z_{n}, z_{n}), p(w_{n}, w_{n}) \}. \]

From (3), it follows that
\[\lim_{n \to \infty} p(z_{0}, z_{n}) = 0 = \lim_{n \to \infty} p(w_{0}, w_{n}). \]

For \(m > n \), consider
\[\max \{ p(z_{m}, z_{m}), p(w_{m}, w_{m}) \} \]

\[\leq \max \left\{ \begin{array}{c}k p(z_{m}, z_{m}) + k^2 \max \{ p(z_{m}, z_{m}), p(w_{m}, w_{m}) \} \\
+ \ldots + k^{m-1} \max \{ p(z_{m}, z_{m}), p(w_{m}, w_{m}) \} \\
k^{m-1} \max \{ p(z_{m}, z_{m}), p(w_{m}, w_{m}) \} \end{array} \right\} \]

\[\leq k \max \{ p(z_{m}, z_{m}), p(w_{m}, w_{m}) \} + k^2 \max \{ p(z_{m}, z_{m}), p(w_{m}, w_{m}) \} \]

\[+ \ldots + k^{m-1} \max \{ p(z_{m}, z_{m}), p(w_{m}, w_{m}) \} + k^{m-1} \max \{ p(z_{m}, z_{m}), p(w_{m}, w_{m}) \} \]
A UNIQUE COMMON COUPLED FIXED POINT THEOREM

\[
\leq (kt^n + k^2 t^{n+1} + \ldots + k^{m-n-1} t^{m-2} + k^{m-n-1} t^{m-1}) \max \left\{ \frac{p(z_n, z_i)}{p(w_n, w_i)} \right\} \leq k^n \left(1 + k t^1 + k^2 t^2 + \ldots + k^{m-n-2} t^{m-n-2} + k^{m-n-2} t^{m-n-1} \right) \max \left\{ \frac{p(z_n, z_i)}{p(w_n, w_i)} \right\} \\
v_k \left(1 + k t^1 + k^2 t^2 + \ldots + k^{m-n-2} t^{m-n-2} + k^{m-n-2} t^{m-n-1} \right) \max \left\{ \frac{p(z_n, z_i)}{p(w_n, w_i)} \right\} \leq \frac{k t^1}{1 - k t} \max \left\{ \frac{p(z_n, z_i)}{p(w_n, w_i)} \right\}, \text{ since } k t < 1.
\]

Hence

\[
\lim_{n \to \infty} p(z_n, z_m) = 0 = \lim_{n \to \infty} p(w_n, w_m).
\]

Thus \(\{z_n\} \) and \(\{w_n\} \) are Cauchy in \((X, p, k)\).

Since \(X \) is complete, the sequences \(\{z_n\} \) and \(\{w_n\} \) converge to some \(\alpha \) and \(\beta \) in \(X \) respectively such that

\[
\lim_{n \to \infty} p(z_n, z) = p(\alpha, \alpha) = 0 = \lim_{n \to \infty} p(w_n, w) = p(\beta, \beta).
\]

Now from (5), we have

\[
 p(\alpha, \alpha) = 0 = p(\beta, \beta).
\]

Suppose \(f(X) \) is closed. Since \(f(x_{2n+2}) = z_{2n+1} \to \alpha \) and \(f(y_{2n+2}) = w_{2n+1} \to \beta \), it follows that \(\alpha = fu \) and \(\beta = fv \) for some \(u, v \in X \).

Consider

\[
0, 0, p(\alpha, \beta) \leq \delta \max \{p(\alpha, F(u, v)), p(\beta, F(v, u))\}, \quad \text{from (4) and Remark 1.7 (ii)}
\]

Thus

\[
p(\alpha, F(u, v)) \leq \delta \max \{p(\alpha, F(u, v)), p(\beta, F(v, u))\}.
\]

Similarly we can show that

\[
p(\beta, F(v, u)) \leq \delta \max \{p(\alpha, F(u, v)), p(\beta, F(v, u))\}.
\]

Hence

\[
\max \{p(\alpha, F(u, v)), p(\beta, F(v, u))\} \leq \delta \max \{p(\alpha, F(u, v)), p(\beta, F(v, u))\},
\]

which in turn yields that \(\alpha = F(u, v) \) and \(\beta = F(v, u) \).

Thus \(fu = \alpha = F(u, v) \) and \(fv = \beta = F(v, u) \).

Since the pair \((F, f)\) is \(w\)-compatible, we have

\[
fu = F(\alpha, \beta) \quad \text{and} \quad fv = F(\beta, \alpha).
\]

Since \(\alpha = F(u, v) \in F(X \times X) \subseteq g(X) \), there exists \(r \in X \) such that \(\alpha = gr \).

Since \(\beta = F(v, u) \in F(X \times X) \subseteq g(X) \), there exists \(t \in X \) such that \(\beta = gt \).
Now \(p(\alpha, G(r, t)) \leq s p(F(u, v), G(r, t)) \leq \delta \) \(M_{r,t}^{u,v} + L \ m_{r,t}^{u,v} \)

\[
M_{r,t}^{u,v} = \max \left\{ \frac{1}{2k} [p(fu, gr) + p(gr, F(u, v))], \frac{1}{2k} [p(fv, G(t, r)) + p(gt, F(v, u))] \right\}
\]

\[
m_{r,t}^{u,v} = 0.
\]

Thus \(p(\alpha, G(r, t)) \leq \delta \max \{ p(\alpha, G(r, t)), p(\beta, G(t, r)) \} \).

Similarly we can show that \(p(\beta, G(t, r)) \leq \delta \max \{ p(\alpha, G(r, t)), p(\beta, G(t, r)) \} \).

Hence \(\max \{ p(\alpha, G(r, t)), p(\beta, G(t, r)) \} \leq \delta \max \{ p(\alpha, G(r, t)), p(\beta, G(t, r)) \} \) which in turn yields that \(gr = \alpha = G(r, t) \) and \(gt = \beta = G(t, r) \).

Since the pair \((G, g)\) is w-compatible, we have \(ga = G(\alpha, \beta) \) and \(gb = G(\beta, \alpha) \).

Now consider

\[
p(f_\alpha, \alpha) \leq k p(F(\alpha, \beta), G(r, t)) \leq \delta \) \(M_{r,t}^{\alpha,\beta} + L \ m_{r,t}^{\alpha,\beta} \)
\]

\[
M_{r,t}^{\alpha,\beta} = \max \left\{ \frac{1}{2k} [p(f_\alpha, gr) + p(gr, F(\alpha, \beta))], \frac{1}{2k} [p(tf_\beta, G(t, r)) + p(gt, F(\beta, \alpha))] \right\}
\]

\[
m_{r,t}^{\alpha,\beta} = 0.
\]

Thus \(p(f, \alpha) \leq \delta \max \{ p(f, \alpha), p(f, \beta) \} \).

Similarly we can show that \(p(f, \beta) \leq \delta \max \{ p(f, \alpha), p(f, \beta) \} \).

Hence \(\max \{ p(f, \alpha), p(f, \beta) \} \leq \delta \max \{ p(f, \alpha), p(f, \beta) \} \) which in turn yields that \(fa = \alpha = f \) and \(fb = \beta \).

Similarly we can show that \(ga = \alpha \) and \(gb = \beta \).

Thus
A UNIQUE COMMON COUPLED FIXED POINT THEOREM

F (α, β) = fα = α = gα = G(α, β) and
F (β, α) = fβ = β = gβ = G(β, α).
Hence (α, β) is a common coupled fixed point of F, G, f and g. Uniqueness of this common coupled fixed point follows easily from (2.1.2).

Now, we give an example to illustrate our main Theorem 2.1.

Example 2.2 Let X = [0, 1] and p(x, y) = max{x^2, y^2}. Then (X, p, k) is a complete partial b-metric-like space with k = 2. Define F, G : X × X → X and f, g : X → X as F(x, y) = 0, G(x, y) = 4x^4, fx = 2x^2 and gx = x. Then

\[k \frac{p(F(x, y), G(u, v))}{p(gu, G(u, v))} = \frac{1}{8} \leq \frac{1}{8} + \frac{1}{4} M_{x,y} + 0 M_{x,y}. \]

Here \(\delta = \frac{1}{8} \), k = 2, \(\frac{l}{4} = \frac{1}{4} < 1 \). Clearly (2.1.1), (2.1.3) and (2.1.4) are satisfied and (0, 0) is the unique common coupled fixed point of F, G, f and g.

Theorem 2.1 is a generalization and improvement of the following:

Theorem 2.3 (Theorem 2.1, [1]): Let (X, p) be a complete partial metric space. Suppose that f, g, F, G : X → X satisfying the following conditions

(2.3.1) \(f(X) \subseteq g(X) \) and \(F(X) \subseteq G(X) \),
(2.3.2) there exist \(\delta > 0 \) and \(L \geq 0 \) with \(\delta + 2L < 1 \) such that
\[p(Fx, fy) \leq \delta M(x, y) + L \min\{p(gx, Fx), p(Gy, fy), p(gx, fy), Gy, Fx\} \]
for all \(x, y \in X \), where
\[M(x, y) = \max\{p(gx, Gy), p(gx, Fx), p(Gy, fy), \frac{1}{2} [p(gx, fy) + p(Gy, Fx)]\}, \]
(2.3.3) \(f(X) \) or \(g(X) \) is closed and
(2.3.4) the pairs \((f, G) \) and \((g, F) \) are w-compatible.

Then f, g, F and G have a unique common fixed point in X.

Acknowledgement

The authors are thankful to the referees for their valuable suggestions in improving the manuscript.

References

Received 24 August 2014
Accepted 20 December 2014