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1. Introduction

n [1] we gave the definition of the incidence Matrices of X- Labeled graphs. In [2], [3] we gave the definition of

the directed graph of groups, constructed graph of groups for pregroups directly from the ordered tree of
pregroups, and from that directed graph of groups we constructed the up-down pregroups, and then we
showed those two pregroups are isomorphic. In [4] Rimlinger gave an example of a pregroup P of finite height; he
said “but Jim Shearer and | spent a very long evening with the computer and verified the pregroup axioms”. | bear
this point in mind. In [2], [3] we have a direct method to obtain examples of pregroups in the form of up-down
pregroups from any directed graph of groups, but sometimes those graphs of groups are large, and then will take a
long time to find those up-down pregroups. In [1] we defined the incidence matrices of X-labeled graphs. The main
aim of this work is to represent the directed graph of finite groups in terms of the incidence matrices of X-labeled
graphs, so that by adding certain conditions to allow the incidence matrices of the X-labeled graph to be more
confident with the definition of the directed graph of groups; we can then write a computer program to record
all elements of the up-down pregroup of that directed graph of groups, as an application of the incidence matrices of
X-labeled graph. Therefore, this paper is divided into six sections. In section 2, we give the basic concepts of
graphs, pregroups and incidence matrices of X-labeled graphs. In section 3, we give the definition of incidence
matrices of directed graphs of groups. In section 4, we construct the up-down pregroup of the incidence matrices of
the directed graph of groups. In section 5, we define an algorithm on the incidence matrices of the directed graph of
groups, so we can then write a computer program for this algorithm.

2. Basic concepts
2.1 Pregroups
The idea of pregroups goes back to Baer [5] and the definition of pregroup was given independently by Stallings

[6] in 1971. The theory of pregroups has been developed by [4], Stallings [6], Hoare [7] and Hoare — Jassim [3] and
others. We now return to the original definition of pregroups [6].
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INCIDENCE MATRICES OF DIRECTED GRAPHS

Let P be a set with an element 1 € P and a mapping of a subset D of P x P into P, denoted
by (x, y) — xy. We shall say that xy is defined instead of (X, y) € D. Suppose that there is an involution on P denoted

by X+ x 1 , such that the following axioms hold:
Pl:x1=1xforallxeP,

P2'><x_1 =1= x_lx foraIIXGP

P3: If xy is defined, then y x_ is defined and(xy) 1x L

P4: if xy and yz are defined then (xy)z is defined if and only if x(yz) is defined, in which case the two are equal and we
will say xyz is defined.
P5: Forany w, x, y and z in P, if wx, xy and yz are defined, then either wxy or xyz is defined .

Hoare [7] showed that we could prove axiom P3 above by using the following proposition, and axioms P1, P2 and P4.

Definition 2.2. [7]: For any x € P, put L(x) ={a e P: ax is defined}. We write x < y if L(y) < L(X), x< y if L(y) c
L(x) and L(x) = L(y),and x ~y if L(x) = L(y). Itis clear that ~ is an equivalence relation compatible with <.

The following results are taken from Stallings [6] and Rimlinger [4]. (See [7] for shorter proofs).

Proposition 2.3.

(i) Ifx<y ory<x,then x L y and y_lx are defined.

(i) If xa and @ " y are defined, then (xa)(a -1 y) is defined if and only if xy is defined, in which case they are
equal.

By using axiom P5 above (which will be denoted by P5(i)) Rimlinger [4] proved conditions P5(ii)
and P5(iii) of Lemma 2.4 below.

Lemma 2.4 [7]. The following conditions on elements of P are equivalent:
P5(i). If wx,xy and yz are defined , then either wxy or xyz is defined .

P5(ii). If xta and a7t y are defined but x 1 y isnot,then a<xand a<y.
P5(iii). I x T is defined, then x < y ory < x.

Therefore, we will say P is a pregroup if it satisfies axioms P1, P2, P4, and the conditions of Lemma 2.4,
above. The universal group of a pregroup P [13] is denoted by U (P) and has the following presentation < P; x.y =
xy whenever xy is defined, for x, y,e P >. Now if P is a pregroup, then (P, <) istree - like partial ordering; that is P/~
has a minimum element and, for any x,yandzinP ,x <z andy < zwe have x < y ory < x. Moreover Rimlinger in
[4] defined that for any element x in P, we say that x has finite height n> 0, if there exists a maximal totally ordered
subset {xg , %1 ,---,Xp } of Psuch that 1= x5 <Xx; <---< Xy = X. He also showed that the elements of P form an

order tree (denoted by O ) whose vertices, [x], are the equivalence classes of the elements of P under ~, and whose
%es g, are formed by joining each vertex [x] of height n > 0 to the unique vertex [y] of height n — 1 satisfying

and all edges e of O are directed away the base vertex [ ~©] of height 0. In [8] Stallings constructed an
up — down pregroup for a free group F generated by X ={a,b} of infinite height, and he showed that U(P) the
universal group of a pregroup P is isomorphic to F. In [2,3] we gave the definition of a directed graph of groups
which consists of a directed graph Y, with a base vertex V*and a spanning tree T, whose edges are directed away
from the base vertex v , together with a group " for each vertex v and for each directed edge € € Y , a subgroup
G. of Gice which is embedded in Gege by ¥ which is defined by ¥ (@) =v."ay,  where & €
(GV,Ge,Y,T,V*,l//e)

C-:‘eand yeisthe
labeled of the edge e. It is denoted by . We also constructed a directed graph of groups of P
directly from the qrder tree O of P and then showed that the fundamental group of a graph of groups

! eV Ve ) isomorphic to U(P) , We constructed an up — down pregroup Q directly from the

directed graph of groups GG Y. TV ye) of a pregroup P and we showed that U(Q) is isomorphic to
”l(Gv’Ge ’Y’T1V ’l//e) and then thatU (Q) = U (P) i
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2.5 Incidence Matrices of X — Labeled Graphs

In [1] we gave the definition of the incidence matrices of X — Labeled graphs (where an X-labeled graph is a
directed graph with each edge labeled by an element x of the subset X of the group F and X generating the group
F), and some definitions and results related to it. Recall that from graph theory the directed graphs I' are without
loops, because we cannot define the incidence matrices of djre tfd graphs F The mcrdence matrrces of directed graphs

, Where

I" are with n vertices and m edges (i.e. it is nxm matrices sisnls<js )such that:

1 if v, =i(e;)
X; =9 0 if v;is notincedence with e,
-1 if v, =7(€;)

-1
Since all edges e in X — Labeled graphs are labeled X € X U X and the incidence matrices of the directed graphs
do not deal with the labeling of edges, we will put more conditions on the incidence matrices of directed graphs as
below to obtain the definition of the incidence matrices of the X- Labeled graphs.

Definition 2.6: Let I" be any X — Labeled graph Wrthout Ioops (Where X ={a, b}) then the incidence matrix of the

X — Labeled graph Tisan NX |§crger(¢e mat#&e )(” amluere <1 < tibel§ <XTE) %Ith " entries such that

X = Oifv, is  notincident with C

xtifv,= z(e;) and e, labels x e X

N.B. Incidence matrices of X — Labeled graphs I' will be denoted by'vI X (F) For example: the Cayley graph

I'(F,X) XcF I'(H)

, the Cayley coset graph of the subgroup H of F, the core graph

of the group F generated by F
. I"(H) X (K)

of the Cayley coset graph I (H) of the subgroup H of F and the product of core graphs are X-

labeled graphs.

Now if X ={a,b} and the X — Labeled graph I" has loops with labeling a or b, then choose a mid point on all edges

labeled a or b to make all of them two edges labeled aa or bb respectively . Therefore in the rest of this work we will
assume that all X — Labeled graphs I'are without loops.

Definition 2.7: Let M X (F) be an incidence matrix of X —Labeled graph I". If M X (F) doesn't contain any row f

= Xik M, (I

X . 1 X:.
with non zero entries ~ " and Xig in X UX™ sych that ¥ , then is called a folded incidence

matrix of X — Labeled graph T
Now we give the basic definitions and some results on the incidence matrix of X — Labeled graph My () , as
given in [1].

X:. : C.
t M, () be an M>*M jincidence matrix [ ”] of X — Labeled graphs T, and let f and ! bearowanda
M, (T)

. . Xii . . r r. . . .
column in respectively. If " is a non — zero entry in the row ', then ! is called an incidence row with

C. X -1 . X. € X .
the column ~J at the non — zero entry 1 € X U X and if the non — zero entry "V , then the row f is
. S C-
called the starting row (denoted by ;)
e(c;) ;X

r f o . C; .
) of the column |f Iftherows ' and ¥ are incident with column ! at the non — zero entries

C. _
of the column !, and the row f is called the ending row ( denoted by

X X . I f . C. C .. .
U and ¥ respectively, then we say that the rows ' and ¥ are adjacent. If ~’ and ~Mare two distinct columns in

r.. . . . C. C . X X
My (I such that the row ' is incidence with the columns ! and ~" at the non — zero entries ~ " and

X, X, € X UX™

. i C C .
respectively (where Y ), then we say that ! and " are adjacent columns. For each column ¢

there is an inverse column denoted by C such that s(€) =e(c).&(c) =s(c) and C =C_ The degree of a row f of
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INCIDENCE MATRICES OF DIRECTED GRAPHS

M, (') deg(r). If the ro

. . I . r. . . .

is the number of the columns incident to 'and is denoted by w ! is incident with at least
. C. C C . r. . I;

three distinct columns !, " and “k at the non — zero entries , then the row ' is called a branch row. If the row

L . C. X -1 . r.

is incident with only one column ! at the non- zeroentry " € X U X ™ and all other entries of ' are zero, then

M () is a finite sequence of form
" where K21 =7, s(c;’) = i and e(c;’) =r, =5(Cp,) 1< j<k.

S=r,c*r,c2, . ..,f_,C

r. . . .

the row ' is called an isolated row. A scale in
€ € € _
S=r,c*r,,Cc2,....r_,C ",

C

L is the starting row r1of the column “1 and the

. . . f . f .
ending row of the scale S is the ending row ¥ of the column Cea and we say that S is a scale from h to kK andSis

1<j<k _2. If s(S) = e(s), then the scale is called a closed scale. If the scale S is
M, (I)

.The starting row of a scale

a scale of length k for

reduced and closed, then S is called a circuit or a cycle. If My () has no cycle, then is called a forest

Iy in M X (F) are called connected if there is a scale S

n My ()

- . I
incidence matrix of X — Labeled graph I'. Two rows ' and

in M X (F) M X (F) is called connected if any two rows f and " i

M ()

.. T r
containing ' and k. Moreover

M (T)

are

connected by a scale S. If is a connected and forest , then is called a tree incidence matrix of X —
Labeled graph I'. Let Q bea subgraph of T, then My () My (F), if the set
My () are subsets of My () and if ¢ is a column in My (A) , then s(c).e(c) and C
My (€)1 My () =My (1) pen My (D)

is called a subincidence matrix of
of rows and columns of

have the same meaning in M, () as they do in is called a

proper subincidence matrix of My (F) A component of My () is a maximal connected subincidence matrix of

My (F) If M, () My (F) and every two rows i and Tin M, () are joined

My () gng Mx (€)

is a subincidence matrix of

by at least one scale S in My () , then My ()
My () s My (©)

is called spanning incidence matrix of and

is called spanning tree of is a spanning and tree incidence matrix . The inverse of My () is

-1
an incidence matrix of X - Labeled graph T

Now by direct calculations and the definitions above, we can prove the following results.

Lemma 2.8: If M X (F)

columns.

is a tree incidence matrix of X — Labeled graph I' with n rows, then My () has n -1

3. Incidence matrices of directed graphs of finite groups.

Definition 3.1: An incidence matrix of a directed graph of finite groups consists of an incidence matrix of X-

(0 M, (T) =

labeled graph M X with a spanning tree matrix of X- labeled graph " X , and a base row 1, together

with a finite group G, for each row r, and a finite group ¢ for each column ¢, such that:
1) The columns of Mx (1) are girected away from" = I1;

G
2) Each column group G is a subgroup of '®):

G =y?
3) Each column group GC is embedded in " by a fixed monomorphism WC, defined by Ve (@) Ye ayc,

aEGC, and Ve = s(¢;) is the non- zero entrance of Clof M, (D) /M (T) It is denoted by

(GG, My (Y), My (T),r"w)

N.B.: Any incidence matrix of a graph of groups may be made into an incidence matrix of a directed graph of groups,

that by choosing My , @ base row r= rl, an orientation on columns and then identifying —¢ with the image of

M (T)

G, .
'©) under the relevant monomorphism.
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-1
c. =(X.,X.) . c =(X., X, )
For each directed column ! ( I ”) in My (F) let C+be ¢, and let ( 4 ”) be the inverse
-1 -1 -1
S(Cj ) :e(cj) and e(Cj )= S(Cj) _where, X = S(Cj) =Y, . Xij :e(Cj) =Yy

column with starting row I and
Y :1, it € = 0% isin Mx (T).

_ ) c.
Yi are the entries of the column !, such that

_ C. = , e X eX™t
N.B. We will denote Ye, bny , (where, Ye, are nonzero entries of (yC“ Ye, ) Ye, : Ye, ), such
that Y, is equal to 1 or -1, if ¢; € My (I')
Example: In this example, we will give a directed graph of groups and then, construct the incidence matrix of this
directed graph of groups GF’GC' I\ﬂ x (Y), My (T%’ r ’l//cg.
Let the directed graph of groups Gy, G Y. TV ye) be as follows:
V,{L,a,x'bx,ax""bx}
{1 a,a,ca}V,
{Laje,
{12,
Vy{Lb, B, po}

e,{L.b}

v, =V{L} e{} V,{1,b}

T ok 4 O O § wo we
Figure 1. The directed graph of groups congtzructe(éejn [3]3P72 Q_)f thgspreg@g?up giysen in [4] p41l.

The incidence matrix of the abo%}directed grgph olf gI’OL?pS (GQ G M X](Y)’]M X r).r Ql//c) is as below:
{1,b} r, -1° 1 X 0 0 O 0

fb.Bp} r,b O -1 0 0 0 0 0 0
{La,xox ,ax™ox} b, 0 0 x' ¥ 0 0 -1 0
W L 0O 0 0 y*-10 0 0

{La} r 0 0 0 0 0 -1 1 1
{L,a,a,ad} r, O 0 0 0 0 O 0 -1

Figure 2. The incidence matrix of the directed graph of groups given in Figure 1 above.
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4. The up-down pregroup of an incidence matrix of a directed graph of finite groups.

In this section we construct the up- down pregroup of the incidence matrix of a directed graph of groups as
below;

Let M5 (') be the incidence matrix of a directed graph of groups (G G My (Y), My (T), 'WC).

The fundamental group of 71 = ﬁl(M X () has the following presentation:

<Gr!ycryc ayc l//c(a) vaEGC’yC =1vce MX(T)'yC ilvce MX(Y)/MX (T)> Now for each

1 -1
directed column CEMx(Y), let ¢ be also denoted by c’ and let C© denote the inverse column with
-1y -1y — €1 €2 .. ySn =+
s(c )_e(c)and e(c )_S(C); also let Yo be of form W= oY1 Gi¥2 - mYn 'g", where Si 11 and

E-:il € S ., Sn+1 — = P .
! and € Coyren o is a circuitat I, with rows r WGy g =T say, and where each 9i is in

£

-1 —
. A word of this form and any subword of it is reduced if it contains no subword Yo @Yo or Ye e (a)-Ye ,

aeG . . . . . a .
where ¢. If it does contain such a subword, we can , using the relations, substitute l//C( ) or a respectively to

obtain a shorter word of the given form representing the same element. Thus each element of the fundamental group is

-1
represented by a reduced word w of this form. Its inverse is representable by the word W~ defined in the usual way.
Moreover, by [13], the reduced Word representlr’ﬁ; any element is unique modulo %successmn of interleaving, i.e.

substituting o Veld " for or vice — versa for any . Let be the incidence

matrix of the directed graph of groups (G, Ge, My (Y), M, (T),r ’l//c)and let 4=C,C0 Gy be an upward

scale in M X (F) which is a finite sequence of columns directed away of the base row I' *. Let the rows of the scale q

* =0..V..0..V..---.0..V.. . eG
be r URAEY ’r”. A word of type q is a word W=01Y1-92-Y5 G0y gntl, whereg' < N

1<i< n+1, and every word w must be reduced and i is the non- zero entry of the starting rows(ci) of the
= P ! frd ! ! P ! 3
column &1 Now Let 47 C0C2 8 gng @ =C0Carr G upward scales in M (I') both starting at '

Let W=0:Y¥1-92-Y2-93 Oy Yi-Oxa andW’:gl,'y{'g;'y;'gé “On-Yha be words of type g and q

c =c
respectively, where K <N The word w is called an |n|t|al subword of the word W', written W << W' ¢ ©1 T4

Yo =VYe 1<j<k g 'yjfl'gjfl' Y 'gl 'gl'yl' 'gj—l'

and hence ~ i i for , and if y"gJ is an element of

""" for each j.

!
Lemma 4.1: The relation " is an initial subword of " is both transitive and tree incidence matrix like, that is W << W
and W <<W' then WKW’ angijf W << W,
W' << W then either W <<W' or W' <<W'

Proof: The result follows dlrectly from the deflnltlon

Now let 4= €1 G2 G g 1Car s " be upward scales inMx () both of them startlng at I
and ending at the same row r, and let W=01Y1-02-Y2-93 - 0ic g W'=01Y1.95.Y2.95 .G be words of
type q and .

q respectively, such that the elements gh and gk are in Gr , and then such a word W'W s called an up — down

word.

For example, the word 1bx1ly.11. 1|s an up-down word, from Figure 2 derived from the upward scales g, with
* I q . + 1,1 &I

rows ' and "5, and 7, withrows ' | .

Let Q(M X (1) be the set of all up-down words of the incidence matrix of a directed graph of groups My (F)

M, ()

Reducing an up-down word in gives another up-down. Therefore, we assume that such a word is reduced.

We use WW " to denote an up-down word.

Lemma 4.2: Let WW ™ and Z'Z " pe reduced up-down words, then (ww) ™ (zz7) is in QMM (M) it ang
only if W' is an initial segment of Z'or Z'is an initial segment of W,

Proof: Since the words ww and 27" are both reduced, so reduction can only take place in the word
(ww™) (Z z )between the last Ye of w' and the first one of 2’
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o~ y-17515-1 ' ,
(ww™) (22 )reduces to an up-down word if and only if either all y°in Woor all ycinZ are

(wWw™) (227,

Moreover

!
eliminated when putting in reduced form. This happens if and only if W'is an initial segment of
Z' or Z' s an initial segment of W' respectively.
. QM (), r
Now we show that X is a pregroup. Since X is a subset of "1
Q(M X () satisfies conditions P P and P, . It remains to be shown that Q(M X (1)) satisfies condition Ps .

Lww™) ={uu™uu™wwt eQ(M, ()} for ww eQ(M, ()

=My (D)

Define ,as before
Lemma 4.3: Let W'W ™" and 2'Z " be reduced up- -down words then W <<’ . implies that WW ™ <227 >
Proof: Suppose that W << 2’ To show WW ' <227 \we must show that L(zz™) is a subset of L(ww™). If

n-I\-17515-1 n,-1
Uu™)"(zz7) is inQ(IvI X (F)) for some uu™ QM X (1) , then , by Lemma 4.2, Z'is an initial segment
u'<<2)) respectively. Since W <<Z' in either case, by
' —1)—1 (W'W_l)

i ' ' ' i
of U or U is an initial segment of Z ( ie.Z <<U or
Lemma 4.1, we have W <<’ or u' << w’) and then by Lemma 4.2 again, (u is defined in

I -1
QM (D)) Therefore (27 ") is asubset of LWW )'HenceWW <777

Theorem 4.4: Q(M, () is a pregroup.
Proof: To show Q(M X (F)) is a pregroup, we will show thatQ(IvI X (F)) satisfies condition P5 (III) of Lemma 2.4.

o1 " -1 -1
Therefore let W'W ™ and 22" be reduced up-down words inQ(MX (F)) and suppose that (Ww™)"(z2 )is
ined in QM (I) 7' <<W o W<<27' wwt<zz?
defined in X . Hence by Lemma 4.2, we have or * Thus by Lemma 4.3, =
ro,-1 T
or ZZ = SWW . Therefore condition P (i) of Lemma 2.4 holds in @M x (1) |
Definition 4.5: The set of all up — down words of the incidence matrix of a directed graph of groups Q(M X (F)) is

called the up- down pregroup of (GT’GC’ M ()M X (T).r ’Wc)the Incidence matrix of a directed graph of
groups, where Q is the up- down pregroup of the directed graph of groups, as shown in [2% and [1].

Theorem 4.6: The Universal group of X (it is denoted by ))) is isomorphic to the

fundamental group 71 = m (My ()

= (My ()

, and since the tree incidence matrix

f = 7, (M ("))

Proof: Since every element in Q(M X () is an element in 71

My (T) spans My (Y)and is directed away from I * every element o can be written as a

product of elements on(MX (F)) Moreover the partial multiplication in Q(M, () implies the relations of
my =7 (My (F))

5. An algorithm for the up-down Pregroup of incidence matrices of directed graphs of groups.

et My (D) = (G, G, My (Y), M, (T). ’WC)be the incidence matrix of a directed graph of groups, then
we use the representation of the directed graph of groups of an up-down pregroup, to write down all the elements of the
up-down pregroup of that graph of groups by aRR,Iylna the foIIowmg algorlthm The steps are given below:
) Find all up words 9 -YinGiva of type upward scales

q (r _r)CI’II’I7.’rI’CI7rI g

G -
il \where i 1<k<n and ka is the non- zero entrance of the

I L . C. .
row ' which is the starting of the column ~J« | as defined above and then proceed step II;
! ! ! !
W=0;Y;-8,- 0¥ -9 W'=0;.Y; 95, 9;, Y5, i
rn . I . Xi_-l X
same row ', (i.e. row 'contains non-zero entrances of forms ~ " and "k ), then makes one of them an up word,

W=0i Y5 900 Yin Bins and makes the other upword gilyjl'giz G0 Yo Gna , down word
_ 11, gLl
19 columns and its entrance Yi tobe™ =0, Vi G, Gy ,and by,

word W.w™ = 91Y1:95-Y2. 9300 Y G, gizl_yjn_...,yj‘ll_gizl,

i) 1) If two up words n1and m1 ending at the

say

n+l

by changing the direction of al

|dent|fy|ng them we get an _up- -down

(where, 9. =9 g'"“ i1 ). Then proceed to step I1I;

n+l
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W=0,Y;-9;,- 95,9

-1 -1
and its label to be 9i...

2) If the up words ~1  end at an isolated row, then change the direction of all columns

41 11
Vi G Yy G , and by identifying them with the row Fi that both of them end

_ 4 V.. o0 Y. O L ytgt.eytg?
with r',then we get an up-down word W-W ~ = 9, Y9, 'g'n.yln'g'nﬂlg'nﬂlyln 9i, Yi -9
V. . d -0 V.. a vigl...ylg?l ' =g. .0 G
— g|1 yh'g|2' 'g'n'an'glnu. y]n gln yh g|1 , ( where, g'n+1 g|n+l g'n+1 fin ). Then proceed to step

[11; 111) If there is no other up-down word, then stop.
Proposition 5.1: All up words 74 Vi QiG55 Gi of type upward scales in
My (1) = (G, Ge, My (V). Mo (T %) are same as all upwords " 9 Vi GG Y Gins o e

upward paths in (GG, Y. T.V'w,)

(G,.G.. Y, TV p.)

. . . r C .
Proof: Since all vertices v and edges e in are represented by rows  and columns in

My (F)), and associated vertex groups GV and edge groups Ge are represented by row groups ' and columns

(G,.G.. Y, T.V'p.)

X..
groups GC respectively, with entrances " of the labeled Ye of the edges of such that

Ye =1 ifeeTang Ve ¥ 1 if € €Y —T  Therefore the direction and the labeling of columns of M (1) , are same
(G, Ge, Y. TVve): Hence all up words W=G0;.Y;,-9;,--Gi -Y; -9 M, (')

W= gil'yjl'giz ...'.gin 'yjn -0

Proposition 5.2: The algorithm must stop.
. ; w(@)ic nxm - My (1) s
Proof: Since the size of is and all vertex groups and edge groups are finite, so is finite

incidence matrix. By step I, we get all reduced up- words, by step Il we get all up- down reduced words, and then by
step 111, we will get all up- down reduced words. Since the origin X- labeled graph does not contain loops, so the set of
all reduced up-down words is finite and then the algorithm must be stop after a finite time.

asin n+1 Of type upward scales in are

(G,,G.,Y. T,V pwe)

same as all up words n+ of type upward paths in .

6. Conclusion

We have given a new application for the incidence matrices of X-labeled graphs. This application is the incidence
matrices of directed graph of finite groups. Therefore, we have added certain conditions to allow the incidence of X-
labeled graphs to be more confident with the definition of the directed graph of finite groups. By this way we can write
a computer program to record all elements of the up- down pregroups of that the directed graphs of finite groups.

References

1. Jassim, W.S. Incidence Matrices of X-Labeled Graphs and an application, Sultan Qaboos University Journal for
Science, 2009, 14, 61-69.

Hoare, A.H.M. and Jassim, W.S. Directed graphs of groups and their up-down pregroups, Faculty of Science
Bulletin, Sana'a University, 2004, 17, 137-154.

3. Jassim, W.S. Pregroups and graphs of groups, Ph.D. Thesis, Birmingham University, 1992.

4. Rimlinger, F. Pregroups and Bass — Serre theory. American Mathematical Society Memoirs, 1987.

5. Baer, R. Free Sums of groups and their generalizations I1l. American Journal of Mathematics, 1950, 647-670.

6

7

no

Stallings, J.P. Group theory and Three dim. Manifolds. Yale Monographs, 1971.
Hoare, A.H.M. Pregroups and Length functions. Proceedings of the Cambridge Philosophical Society. 1988, 21-
30.

8. Stallings, J.P. Adyan Groups and Pregroups, Essays in group theory, MSRI Publications 8ed. By S.M. Gersten,
1987.

9. Abdu, K.A. Representing Core graphs and Nickolas's Algorithm. M.Sc. Thesis, Baghdad University, 1999.

10. Chiswell, 1.M. Abstract Length functions in groups. Proceedings of the Cambridge Philosophical Society. 1976,
417-429.

11. Jassim, W.S. Directed Core Graphs and their up-down pregroups, Al-Mustansiriya Journal of Science, 2006,
17(4): 68-81.

12. Lyndon, R.C. Length functions in groups. Mathematica Scandinavica, 1963, 209-234.

13. Serre, J.P. 1968. Groupes discrets. College de France. Translation, Trees. Springer Verlag, 1980.

Received 10 September 2015
Accepted 7 December 2016

47



