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ABSTRACT: If A is a subset of the normed linear space X, then A is said to be proximinal in X if for each xeX
there is a point yoe A such that the distance between x and A; d(x, A) = inf{||x-Y||: ye A}= |[x—Yo||. The element yq
is called a best approximation for x from A. If for each xe X, the best approximation for x from A is unique then
the subset A is called a Chebyshev subset of X. In this paper the author studies the existence of finite dimensional

Chebyshev subspaces of ™«
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1. Introduction

f A is a subset of the normed linear space X, then A is said to be proximinal in X if for each xeX there is a

point yoeA such that the distance between x and A; d(x, A) = inf{||x-y||: yeA}= |[x=Yo|. In this case the
element yy is called a best approximation for x from A. If for each xeX, the best approximation for x from A is
unique, then the subset A is called a Chebyshev subset of X. If Q is a compact Hausdorf topological space, then
C(Q) denotes the Banach space of all continuous real valued functions defined on Q equipped with the uniform
norm, that is, || f || = max{| f(x) |: xeQ}. For 1 < p < oo, {, denotes the classical Banach space of real sequences,
and Lp[O0, 1] denotes the classical Banach spaces of real measurable functions.

Finite dimensional Chebyshev subspaces of Banach spaces have been the center of attention of
mathematicians for a long time (see for example: [1-5]. One of their important properties is that the single valued
metric projection function is continuous. (see, for example, [6]).

In 1956 Mairhuber [7] proved a special version of what was subsequently called Mairhuber's Theorem.
Mairhuber's Theorem asserts that for any compact Hausdorff space Q, and for any n > 2, the Banach space C(Q)
admits n dimensional Chebyshev subspaces if and only if Q is homeomorphic to a subset of a circle. ([8], Theorem
2.3, page 218). It was shown also that if Q is a compact Hausdorff space, then the n dimensional subspace N of
C(Q) is a Chebyshev subspace if and only if each g # 0 in N has at most n—1 zeros. ([8] Theorem 2.2, page 215).
In 1962, Ahiezer [9] showed that L]0, 1] has no finite dimensional Chebyshev subspaces. It is easy to show that
every finite dimensional subspace of a strictly convex space is a Chebyshev subspace ([10] page 23). Therefore for
1 < p < o, every finite dimensional subspace of £, and every finite dimensional subspace of L,[0, 1] is a
Chebyshev subspace.

In this paper the author studies the existence of the n dimensional Chebyshev subspaces of ta . This is an

important space of sequences, but it is not clear if it has any finite dimensional Chebyshev subspaces. In Section 2
it is shown that for n>1, this Banach space has no Chebyshev subspace of dimension n.
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Before ending this section some terminologies and known results, that will be used later, will be mentioned.

Let €. denote the Banach space all real bounded sequences X = (X1, Xz, ...) equipped with the norm
[IX|le = sup{|xi|: i = 1, 2, ..}. The Banach spaces X and Y are said to be isometric to each other if there is a linear
mapping v from X onto Y such that |yw(X)|| = ||x|| for each xeX. It is clear that the isometry preserves the proximinality
properties; that is, if y is an isometry from X onto Y and A is a subset of X, then for any xeX, d(x, A) = d(y(X),
w(A)). Therefore xo is a best approximation for x from A if and only if y(Xo) is a best approximation for y(x) from

w(A). ([11], page 143) shows that the space ~ = is not separable. In Theorem 1.1 there is another proof for this fact.

Theorem 1.1. : The space ta is not separable.

Proof: For each O<a<1, let 0.cu0005... be the binary representation of o, where o = lor 0 foralli=1, 2, 3, ... .
Define Xqe ts by X« = (011, 02, as...). The set A = {xa; ae(0, 1)% is an uncountable subset ofgw, and if o # B then
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|IXa. — Xl = 1. Now let B be any dense subset of “ =, and let e = 3 , then for any a.e (0, 1) one must have B(Xa, €) N
1

B = {xeB; |[Xa— X||< 3} # ¢. For each a.e(0, 1) choose Y. to be any element in B(Xa, €) » B. It will be shown that if

o # B in (0, 1) then yo # yp . If this is true, then since the interval (0, 1) is uncountable and {y.; ac(0, 1)} < B, it
follows that B is uncountable. Assumg that y« = yp for some o # B in (0, 1), then yaeB(Xa, €) N B(Xp, €). But then

(X = X8l < [[Xoe = Yalio + [V — Xs|lo < 3 + 3 < 1, which contradicts the fact that |[Xo.— Xg|| = 1.

Theorem 1.2. : If Q is a compact subset of the circle, then C(Q) is separable.

Proof: It is clear that the set of all polynomial with rational number coefficients is a countable dense subset of
C[0, 2x]. So CJ[0, 2x] is separable. Now let S be the unit circle in RxR. It will be shown that C(S) is separable. If this is
true, then for any compact subset Q of S, C(Q) must be separable. For each point ®<S there is a unique 6<[0, 2x) such
that ® = (cos 6, sin 0). Define y: C(S)—>C[0, 2x] by w(f)(0) = f(®) if 0 = 27, and y(f)(2x) = yw(f)(0). It is clear that for
each feC(S), the function wy(f) is continuous on [0, 2x]. So v is well defined. It is also clear also that v is linear, and
that ||y (f)|| = ||f|| for each feC(S). So v is an isometry from C(S) into C[0, 2x]. But C[0, 2x] is separable, and therefore
C(S) is also separable.

For a proof of a more general case one can refer to ([12] Proposition 7.6.2 page 126, and Proposition 623 page 95).
2. Main Results

Let X be a linear space and let < be a partially ordered relation defined on X. Then (X, <) is said to be a lattice if
for each x and y in X, the least upper bound xvy and the greatest lower bound xAy of x and y both exist in X. In this
case if xeX, then |x| is defined to be; [x| = xv—x. The Banach space X is called a Banach Lattice if it is a lattice and
for each x and y in X, if |x| < |y| then [|x]| < ||y|l. The element e in the Banach lattice is called a strong order unit if
lle|l =1, and x < e for all xeX with ||x|| < 1. The Banach lattice is called an Abstract M space if ||x+y|| = max {||x||, [IVII}
for each x and y in X satisfying that xAy = 0. For more information about Banach Lattices one can refer to [13].

The following theorem is Theorem 4 page 59 of [14].

Theorem 2.1. : Let X be a real Banach lattice. Then X is isometric to C(Q) for some compact Hausdorff space Q if and
only if X is an abstract M space with a strong order unit.
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Theorem 2.2. : The Banach space ~ « is an abstract M Banach Lattice with a strong order unit.

1

Proof: Let < be the relation defined on ~ = such that for each (x;) and (yi) in ts , (Xi) < (i) if and only if x; <; for all

i=1,2,... Then <is a partially ordered relation on gw. If (xi) and (yi) are two elements in £ then the least upper
bound, (xi)v(y;), of (xi) and (vi) is (xi)v(y;) = (max{x;, yi}), and the greatest lower bound is (x)A(yi) = ( min{x;, yi}). It
is clear that if (x;) and (yi) are two elements in ~ = then both (xi)v(yi) and (x))A(yi) are also elementsin ~ =, and that

if | x| <|yi|foralli=1, 2, ... then ||(Xille < |I(Yi)|l. Therefore ts with the relation < is a Banach lattice. If (x;) and (yi)

Xi > 0 theny; =0, and if y; > 0 then x; = 0. Thus if min {x;, yi} = 0, then xi + yi = max{x, yi}. So for any (x;) and (yi) in

are in ts and (xi)A(yi) = 0 then min{x;, yi} =0 for all i =1, 2, ... . Therefore x; > 0 and y; > 0. For each i =1, 2, .., if
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1 (x)A(yi),= 0 then |(xi) + (yi)lle = max{[|(xi)lle, [I(y)ll-}. Thus

!

FINITE DIMENSIONAL CHEBYSHEV SUBSPACES OF ~ «

1

» is an abstract M space. Finally the constant

function e = (ey, €2, ...) defined by ei =1 for each I =1, 2, ..., is a strong ordered unit for la .

Theorem 2.3. : There is a compact Hausdorff space Q such that

Proof: By Theorem 2.2,

1

» s isometric to C(Q).

/

* is an abstract M Banach Lattice with a strong order unit, and by Theorem 2.1, there is a

compact Hausdorff Q such that X is isometric to C(Q).

The following theorem is an important theorem in Approximation Theory.

Theorem 2.4. (Mairhuber's Theorem): [15]: If n >1, and C(Q) admits an n-dimensional Chebyshev subspace, then Q
is homeomorphic to a subset of the circle.

Theorem 2.5. : If n >1, then

!

« has no Chebyshev subspace of dimension n.

Proof: By Theorem 2.2, £ is isometric to C(Q) for some compact Hausdorff space Q. If this Q is homeomorphic to a

subset of the circle, then by Theorem 1.2, L, is separable. But by Theorem 1.1, ta is not separable. Therefore, Q is

not homeomorphic to a subset of the circle. By Theorem 2.4, if n >1, then

14

« has no n-dimensional Chebyshev

subspace.

3. Conclusion

!

If X is the Banach space ™« of all bounded sequences of real numbers then for n > 2, X has no finite dimensional

Chebyshev subspaces of dimension n.
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