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ABSTRACT: If A is a subset of the normed linear space X, then A is said to be proximinal in X if for each xX 

there is a point y0A such that the distance between x and A; d(x, A) = inf{||xy||: yA}= ||xy0||. The element y0 

is called a best approximation for x from A. If for each xX, the best approximation for x from A is unique then 

the subset A is called a Chebyshev subset of X.  In this paper the author studies the existence of finite dimensional 

Chebyshev subspaces of  .  
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  في المدى محدودةالجزئية   تشيبيشيف فضاءات

  عارف كمال 

                  بحيث ان المسافة Aفي  0yتوجد نقطة  Xفي   x, و كان لكل   Xمجموعة جزْئية من فضاء المتجهات المعياري  Aاذا كانت  :ملخصال

A) d(x, بين x  وA | 0|تساويyx|| عندها نطلق على A  " مجموعة تقريبية" في اسمX.   0النقطةy للنقطة تسمى "احسن تقريب " x  منA اذا .

 .X" مجموعة تشيبيشيفية جزئية" من  Aوحيد عندها تسمى المجموعة  Aمن  Xفي    xكان احسن تقريب لكل 

 في هذه الورقة يدرس المؤلف امكانية وجود فضاءات جزئية تشيبيشيفية محدودة المدى في فضاء 

 .متشابكات باناخ و فضاءات تشيبيشيف الجزئية،  احسن تقريب: مفتاحيةالكلمات ال

1.  Introduction 

f A is a subset of the normed linear space X, then A is said to be proximinal in X if for each xX there is a 

point y0A such that the distance between x and A; d(x, A) = inf{||xy||: yA}= ||xy0||. In this case the 

element y0 is called a best approximation for x from A. If for each xX, the best approximation for x from A is 

unique, then the subset A is called a Chebyshev subset of X. If Q is a compact Hausdorf topological space, then 

C(Q) denotes the Banach space of all continuous real valued functions defined on Q equipped with the uniform 

norm, that is, || f || = max{| f(x) |: xQ}. For 1  p ≤ , ℓp denotes the classical Banach space of real sequences, 

and Lp[0, 1] denotes the classical Banach spaces of real measurable functions.  

Finite dimensional Chebyshev subspaces of Banach spaces have been the center of attention of 

mathematicians for a long time (see for example: [1-5]. One of their important properties is that the single valued 

metric projection function is continuous. (see, for example, [6]).   

In 1956 Mairhuber [7] proved a special version of what was subsequently called Mairhuber's Theorem. 

Mairhuber's Theorem asserts that for any compact Hausdorff space Q, and for any n ≥ 2, the Banach space C(Q) 

admits n dimensional Chebyshev subspaces if and only if Q is homeomorphic to a subset of a circle. ([8], Theorem 

2.3, page 218). It was shown also that if Q is a compact Hausdorff space, then the n dimensional subspace N of 

C(Q) is a Chebyshev subspace if and only if each g ≠ 0 in N has at most n1 zeros. ([8] Theorem 2.2, page 215). 

In 1962, Ahiezer [9] showed that L1[0, 1] has no finite dimensional Chebyshev subspaces. It is easy to show that 

every finite dimensional subspace of a strictly convex space is a Chebyshev subspace ([10] page 23). Therefore for 

1 < p < , every finite dimensional subspace of ℓp and every finite dimensional subspace of Lp[0, 1] is a 

Chebyshev subspace.   

In this paper the author studies the existence of the n dimensional Chebyshev subspaces of  . This is an 

important space of sequences, but it is not clear if it has any finite dimensional Chebyshev subspaces. In Section 2 

it is shown that for n>1, this Banach space has no Chebyshev subspace of dimension n.   
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Before ending this section some terminologies and known results, that will be used later, will be mentioned.  

Let ℓ denote the Banach space all real bounded sequences x = (x1, x2, …) equipped with the norm                  

||x||∞ = sup{|xi|: i = 1, 2, ..}. The Banach spaces X and Y are said to be isometric to each other if there is a linear 

mapping  from X onto Y such that ||(x)|| = ||x|| for each xX. It is clear that the isometry preserves the proximinality 

properties; that is, if  is an isometry from X onto Y and A is a subset of X, then for any xX, d(x, A) = d((x), 

(A)). Therefore x0 is a best approximation for x from A if and only if (x0) is a best approximation for (x) from 

(A). ( [11], page 143) shows that the space  is not separable. In Theorem 1.1 there is another proof for this fact. 

Theorem 1.1. : The space  is not separable.  

 

Proof: For each 0<<1, let 0.123… be the binary representation of , where i = 1or 0 for all i = 1, 2, 3, … . 

Define x  by x = (1, 2, 3…). The set A = {x; (0, 1)} is an uncountable subset of  , and if  ≠  then   

||x  x||∞ = 1. Now let B be any dense subset of  , and let  = 

1

3  , then for any  (0, 1) one must have B(x, )  

B = {xB; ||x  x||<

1

3 } ≠ . For each (0, 1) choose y to be any element in B(x, )  B. It will be shown that if    

 ≠  in (0, 1) then y ≠ y . If this is true, then since the interval (0, 1) is uncountable and {y; (0, 1)}  B, it 

follows that B is uncountable. Assume that y = y for some  ≠  in (0, 1), then yB(x, )  B(x, ). But then     

||x  x||∞ ≤ ||x  y||∞ + ||y  x||∞ < 

1

3 +

1

3 < 1, which contradicts the fact that ||x  x||∞ = 1.  

              

Theorem 1.2.  : If Q is a compact subset of the circle, then C(Q) is separable. 

 

Proof: It is clear that the set of all polynomial with rational number coefficients is a countable dense subset of         

C[0, 2]. So C[0, 2] is separable. Now let S be the unit circle in RR. It will be shown that C(S) is separable. If this is 

true, then for any compact subset Q of S, C(Q) must be separable. For each point S there is a unique [0, 2) such 

that  = (cos , sin ). Define : C(S)C[0, 2] by (f)() = f() if   2, and (f)(2) = (f)(0). It is clear that for 

each fC(S), the function (f) is continuous on [0, 2]. So  is well defined. It is also clear also that  is linear, and 

that ||(f)|| = ||f|| for each fC(S). So  is an isometry from C(S) into C[0, 2]. But C[0, 2] is separable, and therefore 

C(S) is also separable. 

            

For a proof of a more general case one can refer to ([12] Proposition 7.6.2 page 126, and Proposition 623 page 95). 

2. Main Results 

 Let X be a linear space and let ≤ be a partially ordered relation defined on X. Then (X, ≤) is said to be a lattice if 

for each x and y in X, the least upper bound xy and the greatest lower bound xy of x and y both exist in X. In this 

case if xX,  then |x| is defined to be;  |x| = xx. The Banach space X is called a Banach Lattice if it is a lattice and 

for each x and y in X, if |x| ≤ |y| then ||x|| ≤ ||y||. The element e in the Banach lattice is called a strong order unit if      

||e|| = 1, and x ≤ e for all xX with ||x|| ≤ 1. The Banach lattice is called an Abstract M space if ||x+y|| = max {||x||, ||y||} 

for each x and y in X satisfying that xy = 0. For more information about Banach Lattices one can refer to [13].    

 

The following theorem is Theorem 4 page 59 of [14]. 

 

Theorem 2.1. : Let X be a real Banach lattice. Then X is isometric to C(Q) for some compact Hausdorff space Q if and 

only if X is an abstract M space with a strong order unit. 

             

Theorem 2.2. : The Banach space  is an abstract M Banach Lattice with a strong order unit. 

 

Proof: Let ≤ be the relation defined on   such that for each (xi) and (yi) in  , (xi) ≤ (yi) if and only if xi ≤ yi for all  

i = 1, 2, … Then  is a partially ordered relation on  .  If (xi) and (yi) are two elements in   then the least upper 

bound, (xi)(yi), of (xi)  and (yi)  is  (xi)(yi)  = (max{xi, yi}), and the greatest lower bound is (xi)(yi)  = ( min{xi, yi}). It 

is clear that if (xi)  and (yi) are two elements in   then both (xi)(yi) and (xi)(yi)  are also elements in  ,  and that 

if | xi | ≤ | yi | for all i =1, 2, … then ||(xi)||∞ ≤ ||(yi)||∞. Therefore  with the relation ≤  is a Banach lattice. If (xi) and (yi) 

are in   and (xi)(yi) = 0 then min{xi, yi} = 0 for all i =1, 2, … .  Therefore xi ≥ 0 and yi ≥ 0. For each i =1, 2, .. , if   

xi > 0 then yi = 0, and if yi > 0 then xi = 0. Thus if min {xi, yi} = 0, then xi + yi = max{xi, yi}. So for any (xi) and (yi) in 
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 , if (xi)(yi),= 0 then ||(xi) + (yi)||∞ = max{||(xi)||∞, ||(yi)||∞}. Thus   is an abstract M space. Finally the constant 

function e = (e1, e2, …) defined by ei =1 for each I = 1, 2, …, is a strong ordered unit for  .  

         

.is isometric to C(Q) There is a compact Hausdorff space Q such that:  Theorem 2.3. 

 

Proof: By Theorem 2.2,  is an abstract M Banach Lattice with a strong order unit, and by Theorem 2.1, there is a 

compact Hausdorff Q such that X is isometric to C(Q). 

  

The following theorem is an important theorem in Approximation Theory. 

 

Theorem 2.4. (Mairhuber's Theorem): [15]: If n >1, and C(Q) admits an n-dimensional Chebyshev subspace, then Q 

is homeomorphic to a subset of the circle. 

            

Theorem 2.5. : If n >1, then   has no Chebyshev subspace of dimension n. 

 

Proof: By Theorem 2.2,   is isometric to C(Q) for some compact Hausdorff space Q. If this Q is homeomorphic to a 

subset of the circle, then by Theorem 1.2,   is separable. But by Theorem 1.1,   is not separable. Therefore, Q is 

not homeomorphic to a subset of the circle. By Theorem 2.4, if n >1, then  has no n-dimensional Chebyshev 

subspace. 

3. Conclusion 

If X is the Banach space  of all bounded sequences of real numbers then for n  2, X has no finite dimensional 

Chebyshev subspaces of dimension n. 
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