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ABSTRACT: We analyzed two implicit fractional linear multi-step methods of order four for solving fractional initial 

value problems. The methods are derived from the Gr̈unwald-Letnikov approximation of fractional derivative at a non-

integer shift point with super-convergence. The weight coefficients of the methods are computed from fundamental 

Gr̈unwald weights, making them computationally efficient when compared with other known methods of order four. 

We also show that the stability regions are larger than those of the fractional Adams-Moulton and fractional backward 

difference formula methods. We present numerical results and illustrations to verify that the theoretical results obtained 

are indeed satisfied. 
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التقارب الفائق تحليل طرق كسرية خطية متعددة الخطوات ذات الرتبة الرابعة من   

 خديجة الحسني وحنيفة محمد ناصر 

الكسرية،   :صلخ م ال الأولية  القيم  لحل مسائل  الرابعه  الرتبه  ذات  نقوم بتحليل طريقتين ضمنيتين كسريتين خطيتين ومتعددتي الخطوات  البحث  تم  في هذا 

رق من لطشتقاق الطرق من تقريب جرنوالد للمشتقة الكسرية عند نقطة تحول عدد غير صحيح بإستخدام التقارب الفائق، حيث يتم حساب معاملات الوزن لإ

وضحنا أيضا أن    أوزان جرنوالد لنكتوف الأساسية مما يجعلها فعالة من الناحية الحسابية عند مقارنتها بالطرق الأخرى المعروفة من الترتيب الرابع، كما

ال  امناطق  تقديم  أيضا  تم  الجزئي،  العكسي  الفرق  وكذلك طرق صيغة  الكسرية  مولتن  أدمز  مناطق  من  أكبر  الطرق  والرسوم  ستقرارلهذه  العددية  لنتائج 

 التوضيحية للتحقق من أن النتائج النظرية التي تم الحصول عليها مرضية بالفعل.

 

 ستقرار.مناطق ال ؛ طرق أدمز مولتن الكسرية   ؛ تقريب جرنوالد لنكتوف  ؛ التقارب الفائق  ؛ الدالة المولدة ؛ مسائل القيم الأولية الكسرية :مفتاحيةالكلمات ال

 

 

1. Introduction 

onsider the fractional initial value problem (FIVP)   

 

𝐷𝑡0

𝛽
𝑦(𝑡) = 𝑓(𝑡, 𝑦(𝑡)),    𝑡 ≥ 𝑡0,    0 < 𝛽 ≤ 1,  (1) 

𝑦(𝑡0) = 𝑦0 ,  (2) 

 

where 𝐷𝑡0

𝛽
 is the left Caputo fractional derivative operator defined in Section 2, 𝑓(𝑡, 𝑦) is a function satisfying the 

Lipschitz condition in the second argument 𝑦 which guarantees a unique solution to the problem [1,2]. When 𝛽 = 1, 
problem (1) with (2) becomes the classical initial value problem(IVP) with first order derivative. 

Many numerical schemes for approximately solving the FIVP (1) have been proposed in the recent past. The 

numerical methods referred to as fractional linear multi-step methods (FLMMs) are of particular interest. 

C 
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The simplest and most highly investigated FLMM is the fractional Euler method (also known as the Grünwald-

Letnikov method) obtained by approximating the fractional derivative 𝐷𝑡0

𝛽
𝑦(𝑡) in (1), after some modifications, by the 

Grunwald-Letnikov (GL) approximation (See Section 2). 

Converting the FIVP (1) in the form of Volterra integral equation (VIE) of the second kind, Lubich [3—5] 

proposed a class of higher-order FLMMs for the VIE as convolution quadrature rules. The quadrature coefficients of 

the FLMMs are obtained from the fractional order power of some rational polynomials from the linear multistep 

methods(LMMs) for classical IVPs. Moreover, Lubich [5],  suggested a set of implicit fractional backward difference 

formula (FBDF) methods as a subclass of these FLMMs. 

 

Galeone and Garrappa [6] investigated another subclass of implicit FLMMs and called them fractional Adams-Moulton 

methods (FAM), also suggested by Lubich in [5]. They also constructed in [7,8] some explicit FLMMs of this subclass 

and called fractional Adams-Bashforth methods (FAB). Another set of explicit FLMMs was constructed by Bonab and 

Javidi [9]. 

Aceto [10] constructed another subclass of FLMMs by approximating Lubich’s generating functions of the 

FBDFs by Pade approximations. However, in this class, the orders of the FLMMs are reduced compared to the source 

FLMMs.  

The present authors proposed two new implicit FLMMs of order 4 with preliminary properties and tests 

presented in [11]. The methods use the super convergence of the GL approximation. Earlier, the authors used super 

convergence to derive an FLMM of order 2 in [12]. 

This paper analyzes the two implicit FLMMs of order 4 presented in [11]. As FLMMs of orders higher than two 

are not A-stable according to Dahlquist’s second barrier for FIVPs [13], we analyze the stability of the methods 

through 𝐴(𝜋/2)-stability and unconditional stability. We also show that the methods are better in stability than the 

FAM4 of order 4 and one of the methods is better than FBDF4 of order 4. 

The computational costs of these methods have also been compared with other order 4 methods and show that the 

new FLMMs are computationally competitive with the FAM and simpler than that the FBDF4.  

This paper is organized as follows. Section 2 gathers the necessary definitions, theories, and results on factional 

calculus and numerical solutions of FIVPs. In Section 3, we give the main results by constructing the new FLMMs 

along with an algorithm to compute approximate solutions using these methods. In Section 4, we analyze the stability 

of the methods. Section 5 compares our methods with other known methods of order 4. In Section 6, we draw 

conclusions. 

2.  Preliminaries 

The fundamental definitions of fractional derivatives in fractional calculus are typically presented as follows: 

Definition 2.1  Let 𝑦(𝑡) be a function defined in the interval domain [𝑡0, 𝑇] and is sufficiently smooth to hold the 

following:   

1.  When 𝑦 ∈ 𝐿1([𝑡0, 𝑇]), the Riemann-Liouville (RL) fractional integral of order 𝛽 > 0 of 𝑦(𝑡) is defined as  

𝐽𝑡0

𝛽
𝑦(𝑡) =

1

Γ(𝛽)
∫

𝑡

𝑡0

(𝑡 − 𝑠)𝛽−1𝑦(𝑠)𝑑𝑠. (3) 

2.  The RL fractional derivative of order 𝛽 > 0 is defined by  

𝐷̂𝑡0

𝛽
𝑦(𝑡) =

1

Γ(𝑚 − 𝛽)

𝑑𝑚

𝑑𝑡𝑚
∫

𝑡

𝑡0

(𝑡 − 𝑠)𝑚−𝛽−1𝑦(𝑠)𝑑𝑠, 𝑚 − 1 ≤ 𝛽 < 𝑚. (4) 

where 𝑚 = ⌈𝛽⌉ is the integer ceiling of 𝛽, and Γ(⋅) denotes Euler’s gamma function. 𝐷𝑚 =
𝑑𝑚

𝑑𝑡𝑚 is the 𝑚-th order 

differential operator.  

3.  The Caputo derivative of order 𝛽 > 0 is defined by  

𝐷𝑡0

𝛽
𝑦(𝑡) =

1

Γ(𝑚 − 𝛽)
∫

𝑡

𝑡0

(𝑡 − 𝑠)𝑚−𝛽−1𝑦(𝑚)(𝑠)𝑑𝑠, 𝑚 − 1 ≤ 𝛽 < 𝑚. (5) 

4.  The Grünwald-Letnikov definition of fractional derivative is given by  

𝐷̃𝑡0

𝛽
𝑦(𝑡) = lim

𝜏→0

1

𝜏𝛽
∑

∞

𝑘=0

𝑔𝑘
(𝛽)

𝑦(𝑡 − 𝑘𝜏), (6) 

where 𝑔𝑘
(𝛽)

= (−1)𝑘 Γ(𝛽+1)

Γ(𝛽−𝑘+1)𝑘!
 are called the Grünwald weights.  

5.  A shifted form of GL fractional derivative is also available [14]:  

𝐷̃𝑡0,𝑟
𝛽

𝑦(𝑡) = lim
𝜏→0

1

𝜏𝛽
∑

∞

𝑘=0

𝑔𝑘
(𝛽)

𝑦(𝑡 − (𝑘 − 𝑟)𝜏), (7) 

where 𝑟 is the shift which is often taken to be an integer, but any real shift is valid.  
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Remark: The fractional derivatives given above are called the left fractional derivatives as there are also their right 

counterparts. For details see [15,16] and the references therein. 

The fractional integrals and derivatives are related such that the RL and Caputo derivatives are two left inverses of the 

RL integral [1]:  

𝐷̂𝑡0

𝛽
𝐽𝑡0

𝛽
𝑦(𝑡) = 𝐷𝑡0

𝛽
𝐽𝑡0

𝛽
𝑦(𝑡) = 𝑦(𝑡). (8) 

However, the two fractional derivatives in (4) and (5) are related by  

𝐷𝑡0

𝛽
𝑦(𝑡) = 𝐷̂𝑡0

𝛽
[𝑦(𝑡) − 𝑇𝑚−1(𝑡 − 𝑡0). ,    𝑦 ∈ 𝐶𝑚−1[𝑡0, 𝑇], 𝑦(𝑚) ∈ 𝐿1[𝑡0, 𝑇],  

where  

𝑇𝑚−1(𝑡) = ∑

𝑚−1

𝑘=0

𝑡𝑘

𝑘!
𝑦(𝑘)(𝑡0). 

Hence, the RL and Caputo fractional derivatives are equal under the homogeneous initial conditions 𝑦(𝑘)(𝑡0) = 0, 𝑘 =
0,1, … , 𝑚 − 1 [1, 2]. The GL fractional derivative in (6) and its shifted counterpart in (7) are also equivalent to the 

Caputo derivative under homogeneous conditions and are often utilized as tools for numerical approximations of 

fractional derivatives. 

2.1 Approximation of fractional integrals and derivatives  

To approximate the fractional integrals and derivatives, the involving domain [𝑡0, 𝑇] is discretized into a 

computational domain with uniformly spaced discrete points 𝑡𝑘 = 𝑡0 + 𝑘𝜏, 𝑘 = 0,1, … , 𝑁 with a fixed step size 𝜏 =
(𝑇 − 𝑡0)/𝑁. The fractional integral can be approximated by using a quadrature rule as the sum of weighted function 

values at the discrete points of the involved integrating domain. Common quadrature rules used in this sense are the 

rectangular and trapezoid rules [17-19]. Lubich [5] introduced a convolution quadrature approximation formula for the 

fractional integral 

𝐽𝜏
𝛽

𝑦(𝑡) = 𝜏𝛽 ∑

𝑛

𝑘=0

𝜔𝑘𝑦(𝑡 − 𝑘𝜏), 

where the weights 𝜔𝑘 are obtained from the power series expansion of the generating function 𝜔(𝜉) = (
𝜎(1/𝜉)

𝜌(1/𝜉)
)

𝛽

 with 

(𝜌, 𝜎) being the pair of generating polynomials of the LMM for classical IVPs [1]. The order of consistency for the 

FLMM is the same as that of the underlying LMM. As for the approximation of fractional derivatives, the fundamental 

approximation for the RL fractional derivative is obtained from the GL (or generally the shifted GL) definition by 

simply dropping the limit for a fixed step size 𝜏. This gives an order one approximation 𝛿𝜏,𝑟
𝛽

𝑦(𝑡) with an integer shift 𝑟 

[5,21].  

 𝛿𝜏,𝑟
𝛽

𝑦(𝑡) =
1

𝜏𝛽
∑∞

𝑘=0 𝑔𝑘
(𝛽)

𝑦(𝑡 − (𝑘 − 𝑟)𝜏) = 𝐷𝑡0

𝛽
𝑦(𝑡) + 𝑂(𝜏), 

where the initial value 𝑦0 has been subtracted from 𝑦(𝑡) to satisfy the homogeneous initial condition so that the 

different definitions coincide. 

However, for the particular non-integer shift 𝑟 = 𝛽/2, the above Grünwald approximation gives order 2 displaying 

super convergence [22].   

 𝛿𝜏,𝛽/2
𝛽

𝑦(𝑡) = 𝐷𝑡0

𝛽
𝑦(𝑡) + 𝑂(𝜏2).  

Analogous to the convolution quadrature approximation for fractional integral, fractional derivatives can also be 

approximated by convolution quadrature formula in a similar form  

 Ω𝜏,𝑟
𝛽

𝑦(𝑡) = 𝜏−𝛽 ∑∞
𝑘=0 𝑤𝑘𝑦(𝑡 − 𝑘𝜏),  

where 𝑤𝑘 are the coefficients of a generating function 𝑊(𝜉).  

The order of consistency of an FLMM can be obtained from its generating function through the following theorem.  

 

Theorem 2.2 [14,23,24] Let 𝑊(𝜉) be the generating function of an approximation in the shifted form of the fractional 

derivative 𝐷𝑡0

𝛽
𝑦(𝑡), 

Ω𝜏,𝑟
𝛽

𝑦(𝑡) =
1

𝜏𝛽
∑

∞

𝑘=0

𝑤𝑘𝑦(𝑡 − (𝑘 − 𝑟)𝜏, 

where 𝑦(𝑡) is sufficiently smooth. The order of the shifted approximation with shift r is 𝑚 if and only if  

𝐺(𝑥) =
1

𝑥𝛽 𝑊(𝑒−𝑥)𝑒𝑟𝑠 = 1 + 𝑂(𝑥𝑚).                                                              (9) 

Moreover, we have 

 𝛺𝜏,𝑟
𝛽

𝑦(𝑡) = 𝐷𝑡0

𝛽
𝑦(𝑡) + 𝜏𝑚𝑎𝑝𝐷𝑡0

𝛽+𝑚
𝑦(𝑡) + 𝜏𝑚+1𝑎𝑝+1𝐷𝑡0

𝛽+𝑚+1
𝑦(𝑡) + ⋯,      (10) 

where 𝒂𝒌 ≡ 𝒂𝒌(𝜷, 𝒓) are the coefficients of the series expansion of 𝑮(𝒙): 

𝑮(𝒙) = 𝟏 + ∑ 𝒂𝒌

∞

𝒌=𝒑

𝒙𝒌. 
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2.2  FLMM scheme 

The general form of an FLMM scheme for the FIVP in (1) and (2) is given by  

 

∑

𝑛

𝑘=0

𝑝𝑘𝑦𝑛−𝑘 = 𝜏𝛽 ∑

𝑛

𝑘=0

𝑞𝑘𝑓𝑛−𝑘, (11) 

where 𝑝𝑘  and 𝑞𝑘 are the coefficients of the generating functions 

𝑝(𝜉) = ∑

∞

𝑘=0

𝑝𝑘𝜉𝑘     and    𝑞(𝜉) = ∑

𝑛

𝑘=0

𝜎𝑘𝜉𝑘 . 

and 𝑦𝑘  and 𝑓𝑘 denote  

𝑦𝑘 ≈ 𝑦(𝑡𝑘)   and   𝑓𝑘 = 𝑓(𝑡𝑘, 𝑦𝑘). (12) 

In numerical computations using the FLMMs of order more than one, the intended order 𝑚 is achieved only for a 

certain class of functions, specifically for functions of the form 𝑦(𝑡) = 𝑡𝛼𝑔(𝑡), 𝛼 ≥ 𝑚, with 𝑔(𝑡) analytic [5]. 

However, for 𝛼 < 𝑚, the order is reduced to 𝑂(ℎ𝛼) only. To remedy this order reduction, an additional sum is 

introduced in (11) to have the approximation scheme  

∑

𝑠

𝑘=0

𝑤𝑛,𝑘𝑦𝑘 + ∑

𝑛

𝑘=0

𝑤𝑘
(𝛽)

𝑦𝑛−𝑘 = 𝜏𝛽 ∑

𝑛

𝑘=0

𝜎𝑘𝑓𝑛−𝑘 . (13) 

The starting weights 𝑤𝑛,𝑘 in (13) are to compensate for the reduced order of convergence.  

However, computing the starting weights poses many difficulties in practice. Since the starting weights do not 

affect the stability or convergence of the solution, we do not include them in the computation and analysis in the 

subsequent sections. For some developments on the starting weights, we refer to [20, 26, 27]. 

2.3 Stability 

For the analysis of the stability of an FLMM, consider the linear test problem  

𝐷𝑡0

𝛽
𝑦(𝑡) = 𝜆𝑦(𝑡),    𝑦(𝑡0) = 𝑦0, 𝜆 ∈ ℂ, 0 < 𝛽 < 1 (14) 

for which the analytical solution is 𝑦(𝑡) = 𝐸𝛽(𝜆𝑡𝛽)𝑦0, where 𝐸𝛽(𝑡) = ∑∞
𝑘=0

𝑡𝑘

Γ(𝛽𝑘+1)
 is the Mittag-Leffler function. For 

analytical stability, the solution 𝑦(𝑡) of the test problem (14) is stable in the sense that the series of 𝑦(𝑡) converges in 

the region  

 Σ𝛽 = {𝜉 ∈ 𝐶: |𝑎𝑟𝑔(𝜉)| > 𝛽𝜋/2}. 

The unstable region is then the infinite wedge with angle 𝛽𝜋. (See Figure 1). 

 

 

Figure 1. Analytical Stability regions. 

 

 

For the numerical stability of FLMM, we have the following criteria:  

 

Definition 2.3 Let 𝑆 be the numerical stability region of an FLMM. For an angle 𝛼, measured from the negative real 

axis, define the wedge 𝑆(𝛼) = {𝑧: |𝑎𝑟𝑔(𝑧) − 𝜋| ≤ 𝛼}. The FLMM is said to be   

1. 𝐴(𝛼)-stable if 𝑆(𝛼) ⊆ 𝑆  

2. 𝐴-stable if it is 𝐴(𝜋 − 𝛽𝜋/2) stable.That is, Σ𝛽 ⊆ 𝑆.  

3. 𝐴(𝜋/2)-stable when the entire left half of the complex plane is included in 𝑆.  

4. Unconditionally stable if it is 𝐴(0)-stable. That is, the negative real line is included in S.   

The stability region of an FLMM is also characterized by its generating function: 

Theorem 2.4 [5] The stability region of an FLMM with generating function 𝑤(𝜉) is given by  

 𝑆 = {𝑊(𝜉): |𝜉| > 1} = ℂ ∖ 𝑆𝑐,  
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where 𝑆𝑐 = {𝑊(𝜉): |𝜉| ≤ 1} is the unstable region.  

3.  New FLMMs of order 4 

In this section, we give the construction of these methods. Denote by 𝐶𝑛(ℝ) the class of functions having 

continuous nth derivatives.  

3.1   Necessary Approximations 

We need the following preparations. 

 

Lemma 3.1  Let 𝑦(𝑡) ∈ 𝐶4(ℝ) and ℎ > 0. For 𝜇 ∈ ℝ, 𝑦(𝑡 + 𝜇ℎ) can be interpolated with order 4 as  

𝑦(𝑡 + 𝜇ℎ) = 𝑝0𝑦(𝑡) + 𝑝1𝑦(𝑡 − ℎ) + 𝑝2𝑦(𝑡 − 2ℎ) + 𝑝3𝑦(𝑡 − 3ℎ) + 𝑂(ℎ4),                                                              (15) (15) 

where 𝑝𝑖 , 𝑖 = 0,1,2,3 are the coefficients of the Lagrange interpolation polynomial approximation for a function of 𝜇 at 

the points 𝜇𝑖 = 0, −1, −2, −3 given by   

𝑝0 =
(𝜇+1)(𝜇+2)(𝜇+3)

6
, 𝑝1 = −

𝜇(𝜇+2)(𝜇+3)

2
, 𝑝2 =

𝜇(𝜇+1)(𝜇+3)

2
, 𝑝3 = −

𝜇(𝜇+1)(𝜇+2)

6
.                                     (16) 

 

Proof. Consider 𝑦(𝑡 + 𝜇ℎ) as a function of 𝜇ℎ interpolated at points 𝜇𝑖ℎ = 0, −ℎ, −2ℎ and −3ℎ. Then the coefficients 

𝑝𝑖  are the Lagrange interpolation basis functions 𝐿𝑖(𝜇ℎ) = ∏3
𝑗=0,𝑗≠𝑖

𝜇ℎ−𝜇𝑗ℎ

𝜇𝑖ℎ−𝜇𝑗ℎ
 which reduce to 𝑝𝑖 , 𝑖 = 0,1,2,3. The error 

of the interpolation is given by 𝐸 =
1

4!
∏3

𝑗=0 (𝜇ℎ − 𝑗ℎ)𝑦(4)(𝑡 + 𝜉ℎ) = 𝑂(ℎ4), where 𝜉 ∈ (−3,0). ∎ 

 

Lemma 3.2  The second derivative of a function 𝑓(𝑥) can be approximated by the backward difference forms of order 

2 as   

𝑑2

𝑑𝑥2
𝑓(𝑥) =

1

ℎ2
(2𝑓(𝑥) − 5𝑓(𝑥 − ℎ) + 4𝑓(𝑥 − 2ℎ) − 𝑓(𝑥 − 3ℎ)) + 𝑂(ℎ2)     (17) 

            
𝑑2

𝑑𝑥2
𝑓(𝑥) =

1

ℎ2
(3𝑓(𝑥 − ℎ) − 8𝑓(𝑥 − 2ℎ) + 7𝑓(𝑥 − 3ℎ) − 2𝑓(𝑥 − 4ℎ)) + 𝑂(ℎ2). (18) 

Proof. Taylor series expansions. ∎ 

 

Lemma 3.3 The shifted GL approximation (7) with shift 𝑟 =
𝛽

2
 has order 2 super convergence in (10) with the 

coefficients of the odd order terms 𝑎2𝑘+1 = 0 for 𝑘 = 0,1,2, ⋯. Moreover, we have 𝑎2 =
𝛽

24
. 

 

Proof. The generating function of the GL approximations in (6) and (7) is 𝑊(𝑧) = (1 − 𝑧)𝛽.  

The function 𝐺(𝑥) =
1

𝑥𝛽
(1 − 𝑒−𝑥)𝛽𝑒

𝛽

2
𝑥
 in (9) is an even function since 

𝐺(−𝑥) =
1

(−𝑥)𝛽
(1 − 𝑒𝑥)𝛽𝑒−

𝛽
2

𝑥 =
1

(−𝑥)𝛽
(−1)𝛽𝑒𝛽𝑥 (1 − 𝑒−𝑥)𝛽𝑒−𝛽𝑥𝑒

𝛽
2

𝑥 = 𝐺(𝑥). 

Hence, the odd order terms of the series expansion of 𝐺(𝑥) are zero. Moreover, expanding for the first few terms 

reveals 𝑎0 = 1, 𝑎2 =
𝛽

24
. ∎ 

 

From Theorem 2.2 again, we have from (10), 

𝛿
𝜏,

𝛽
2

𝛽
𝑦(𝑡𝑛) =

1

𝜏𝛽
∑

∞

𝑘=0

𝑔𝑘
(𝛽)

𝑦 (𝑡𝑛 − (𝑘 −
𝛽

2
) 𝜏) = 𝐷𝑡0

𝛽
𝑦(𝑡𝑛) + 𝑎2𝜏2𝐷𝑡0

𝛽+2
𝑦(𝑡𝑛) + (𝜏4). (19) 

Writing 𝐷𝑡0

𝛽+2
= 𝐷2𝐷𝑡0

𝛽
, we replace the fractional derivative 𝐷𝑡0

𝛽
𝑦(𝑡𝑛) in (19) by 𝑓(𝑡𝑛, 𝑦(𝑡𝑛)):  

∑

∞

𝑘=0

𝑔𝑘
(𝛽)

𝑦 (𝑡𝑛−𝑘 +
𝛽𝜏

2
) = 𝜏𝛽𝑓(𝑡𝑛, 𝑦(𝑡𝑛)) + 𝑎2𝜏2+𝛽𝐷2𝑓(𝑡𝑛, 𝑦(𝑡𝑛)) + 𝑂(𝜏4+𝛽). (20) 

 

We approximate 𝑦(𝑡𝑛−𝑘 + 𝛽𝜏/2) by (15) in Lemma 3.1 with 𝜇 = 𝛽/2 and 𝑡 = 𝑡𝑛−𝑘. Moreover, approximate the 

second derivative in (20) by (17) in Lemma 3.2. Then, we have from (16) with 

𝑝0 =
(𝛽+2)(𝛽+4)(𝛽+6)

48
, 𝑝1 = −

𝛽(𝛽+4)(𝛽+6)

16
, 𝑝2 =

𝛽(𝛽+2)(𝛽+6)

16
, 𝑝3 = −

𝛽(𝛽+2)(𝛽+4)

48
.                     (21) 

∑

∞

𝑘=0

𝑔𝑘
(𝛽)[𝑝0𝑦(𝑡𝑛−𝑘) + 𝑝1𝑦(𝑡𝑛−𝑘−1) + 𝑝2𝑦(𝑡𝑛−𝑘−2) + 𝑝3𝑦(𝑡𝑛−𝑘−3)]                 

= 𝜏𝛽[𝑓(𝑡𝑛, 𝑦(𝑡𝑛)) + 𝑎2(2𝑓(𝑡𝑛, 𝑦(𝑡𝑛)) − 5𝑓(𝑡𝑛−1, 𝑦(𝑡𝑛−1)) + 4𝑓(𝑡𝑛−2, 𝑦(𝑡𝑛−2))

− 𝑓(𝑡𝑛−3, 𝑦(𝑡𝑛−3))] + 𝑂(𝜏4+𝛽). (22) 

 

Dropping the error term, with the notations in (12), equation (22) gives an implicit FLMM scheme  
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∑

∞

𝑘=0

𝑔𝑘
(𝛽)

(𝑝0𝑦𝑛−𝑘 + 𝑝1𝑦𝑛−1−𝑘 + 𝑝2𝑦𝑛−2−𝑘 + 𝑝3𝑦𝑛−3−𝑘) 

                                                    = 𝜏𝛽[𝑓𝑛 + 𝑎2(2𝑓𝑛 − 5𝑓𝑛−1 + 4𝑓𝑛−2 − 𝑓𝑛−3)].                                                          (23) 

 

Again, approximating the second derivative in (20) by (18) in Lemma 3.2, with the same operations and notations, we 

get another implicit FLMM:  

∑

∞

𝑘=0

𝑔𝑘
(𝛽)

(𝑝0𝑦𝑛−𝑘 + 𝑝1𝑦𝑛−1−𝑘 + 𝑝2𝑦𝑛−2−𝑘 + 𝑝3𝑦𝑛−3−𝑘) 

                                                  = 𝜏𝛽[𝑓𝑛 + 𝑎2(3𝑓𝑛−1 − 8𝑓𝑛−2 + 7𝑓𝑛−3 − 2𝑓𝑛−4)] (24) 

 

For brevity of presentation, we call these FLMMs in (23) and (24) as NFLMM4.1 and NFLMM4.2 respectively. 

3.2  Implementation 

We use the following notations: 

For a sequence 𝑎 = {𝑎𝑘}, we denote the finite vector [𝑎𝑖 , 𝑎𝑖+1, … , 𝑎𝑗] as 𝑎𝑖:𝑗. For given two sequences 𝑎, 𝑏, the 

convolution of two equal sized vectors 𝑎𝑖:𝑗 , 𝑏𝑙:𝑚, , with 𝑗 − 𝑖 + 1 = 𝑚 − 𝑙 + 1, as (𝑎𝑖:𝑗 ∗ 𝑏𝑙:𝑚) = ∑𝑗
𝑘=𝑖 𝑎𝑘𝑏𝑛−𝑘, where 

𝑛 = 𝑚 + 𝑖 = 𝑙 + 𝑗. 

Using these notations, the two proposed NFLMMs can be written as  

 (𝑤0:𝑛 ∗ 𝑦0:𝑛) = 𝜏𝛽(𝑞0:𝑚 ∗ 𝑓𝑛−𝑚:𝑛), (25) 

 where 𝑦 = {𝑦𝑘}, 𝑓 = {𝑓𝑘}, 𝑔 = {𝑔𝑘} and 𝑤 = {𝑤𝑘} with 𝑤𝑘 given by  

 𝑤𝑘 = 𝑝0𝑔𝑘 + 𝑝1𝑔𝑘−1 + 𝑝2𝑔𝑘−2 + 𝑝3𝑔𝑘−3 = 𝑝 ∗ 𝑔𝑘−3:𝑘,    𝑘 = 0,1, …, 
where we have assumed 𝑔−1 = 𝑔−2 = 𝑔−3 = 0. The coefficient vectors 𝑝, 𝑞 are given by   

        𝑝 = [𝑝0, 𝑝1, 𝑝2, 𝑝3] with   𝜇 = 𝛽/2, (26) 

for NFLMM4.1:            𝑞 = [1 + 2𝑎2, −5𝑎2, 4𝑎2, −𝑎2],   𝑚 = 3, (27) 

for NFLMM4.2:            𝑞 = [1,3𝑎2, −8𝑎2, 7𝑎2, −2𝑎2],    𝑚 = 4. (28) 

Extracting terms of 𝑦𝑛, we write (25) as  

 𝑤0𝑦𝑛 + (𝑤1:𝑛 ∗ 𝑦0:𝑛−1) = 𝑞0𝜏𝛽𝑓𝑛 + 𝜏𝛽(𝑞1:𝑚 ∗ 𝑓𝑛−𝑚:𝑛−1). (29) 

First, we consider linear FIVP with 𝑓(𝑡, 𝑦) = 𝜆𝑦(𝑡) + 𝐹(𝑡). Then, equation (29) becomes, after solving for 𝑦𝑛,  

 𝑦𝑛 =
1

𝑤0−𝑞0𝜆𝜏𝛽 [𝑞0𝜏𝛽𝐹𝑛 − 𝑠𝑛−1],   

where 𝐹𝑛 = 𝐹(𝑡𝑛) and 𝑠𝑛−1 = (𝑤1:𝑛 ∗ 𝑦0:𝑛−1) − 𝜏𝛽(𝑞1:𝑚 ∗ 𝑓𝑛−𝑚:𝑛−1) which is independent of 𝑦𝑛. 

 

Algorithm 1:  Linear FIVP Solver 

    1.  Input 𝛽, 𝜏, 𝑦0, function 𝑓(𝑡) 

    2.  Compute 𝑔 = {𝑔𝑘}, using 𝑔0 = 1, 𝑔𝑘 = (1 −
𝛽+1

𝑘
)𝑔𝑘−1, 𝑘 = 1,2, … , 𝑁.  

    3.  Compute the convolution 𝑤 = 𝑝 ∗ 𝑔 = [(𝑝 ∗ 𝑔𝑘−𝑚:𝑘): 𝑘 = 0,1, … , 𝑁].  
    4.  For 𝑛 = 1,2, … , 𝑁,  

    5.   𝑠𝑛−1 = (𝑤1:𝑛 ∗ 𝑦0:𝑛−1) − 𝜏𝛽(𝑞1:𝑚 ∗ 𝑓𝑛−𝑚:𝑛−1)  

    6.   𝑦𝑛 =
1

𝑤0−𝑞0𝜆𝜏𝛽 [𝑞0𝜏𝛽𝐹𝑛 − 𝑠𝑛−1].  

Next, for the nonlinear FIVP, we write equation (29) in the unknown 𝑦 = 𝑦𝑛:  

 𝐻(𝑡𝑛, 𝑦𝑛) + 𝑠𝑛−1 = 0, (30) 

where 𝐻(𝑡, 𝑦) = 𝑤0𝑦 − 𝑞0𝜏𝛽𝑓(𝑡, 𝑦). 
We use Newton-Raphson iteration to solve (30) for 𝑦𝑛 using the initial seed 𝑦𝑛,0 = 𝑦𝑛−1. 

The derivative of 𝐻(𝑡, 𝑦) with respect to 𝑦 is 𝐻𝑦(𝑡, 𝑦) = 𝑤0 − 𝑞0𝜏𝛽𝑓𝑦(𝑡, 𝑦), 

where 𝑓𝑦 =
𝜕

𝜕𝑦
𝑓(𝑡, 𝑦). Then, the algorithm for non-linear FIVP is given by 

 

Algorithm 2: Non-linear FIVP Solver   

    1.  Input 𝛽, 𝜏, 𝑦0, functions 𝑓(𝑡, 𝑦), 𝑓𝑦(𝑡, 𝑦)  

    2.  compute 𝑔 = {𝑔𝑘}, using 𝑔0 = 1, 𝑔𝑘 = (1 −
𝛽+1

𝑘
)𝑔𝑘−1, 𝑘 = 1,2, … , 𝑁.  

    3.  Compute 𝑤 = 𝑝 ∗ 𝑔 = [𝑝 ∗ 𝑔𝑘−3:𝑘: 𝑘 = 0,1, … , 𝑁].  
    4.  Define functions 𝐻(𝑡, 𝑦) = 𝑤0𝑦 − 𝑞0𝜏𝛽𝑓(𝑡, 𝑦), 𝐻𝑦(𝑡, 𝑦) = 𝑤0 − 𝑞0𝜏𝛽𝑓𝑦(𝑡, 𝑦)  

    5.  For 𝑛 = 1,2, … , 𝑁,  

    6.   𝑠𝑛−1 = (𝑤1:𝑛 ∗ 𝑦0:𝑛−1) − 𝜏𝛽(𝑞1:𝑚 ∗ 𝑓𝑛−𝑚:𝑛−1)  

    7.   𝑦𝑛 = 𝑁𝑒𝑤𝑡𝑜𝑛(𝐻(𝑡𝑛, 𝑦) + 𝑠𝑛 , 𝐻𝑦(𝑡𝑛, 𝑦), 𝑦𝑛−1)  

where the function 𝑁𝑒𝑤𝑡𝑜𝑛(ℎ(𝑦), ℎ′(𝑦), 𝑦(0)) performs the Newton-Raphson iterations to compute the root of ℎ(𝑦) =
0 with initial seed 𝑦(0). 
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4.  Analysis of linear stability 

The generating functions of the new implicit schemes NFLMM4.1 and NFLMM4.2 are given by:  

𝑊4.1(𝜉; 𝛽) =
(1 − 𝜉)𝛽𝑃(𝜉)

𝑄4.1(𝜉)
   and  𝑊4.2(𝜉; 𝛽) =

(1 − 𝜉)𝛽𝑃(𝜉)

𝑄4.2(𝜉)
 (31) 

respectively, where 𝑃(𝜉), 𝑄4.1(𝜉) and 𝑄4.2(𝜉) are polynomials for which the coefficients are given by (26),(27) and 

(28) repectively. The following elementary results on complex numbers is useful.  

 

Lemma 4.1  Let 𝑧, 𝑤, be two distinct non-zero complex numbers. Then, the following are equivalent. 

(i) 𝑧𝑤 is a real.  

(ii) 𝑧/𝑤 is real.   

(iii) Both z,w are real or 𝑧 is a real multiple of 𝑤̅.  

 

Proof.(𝑖) ⇔ (𝑖𝑖) and (𝑖) ⇐ (𝑖𝑖𝑖) are obvious. It is enough to prove (𝑖) ⇒ (𝑖𝑖𝑖).  
Suppose that 𝑧 = 𝑥 + 𝑖𝑦, 𝑤 = 𝑎 + 𝑖𝑏. Then 𝑧𝑤 = 𝑥𝑎 − 𝑦𝑏 + 𝑖(𝑥𝑏 + 𝑦𝑎) is real implies 𝑥𝑏 + 𝑦𝑎 = 0. Then, for a real 

𝛼, 𝑥/𝑎 = −𝑦/𝑏 = 𝛼 ≠ 0 which gives 𝑥 = 𝛼𝑎 and 𝑦 = −𝛼𝑏. Hence 𝑧 = 𝛼𝑤̅. ∎ 

 

In order to analyze the stability properties of the methods, we consider the unstable regions {𝑊4.𝑥(𝜉; 𝛽): |𝜉| ≤ 1}, 𝑥 =
1,2 and their properties. 

 

Theorem 4.2  The generating functions 𝑊4.𝑥(𝜉; 𝛽), 𝑥 = 1,2, in (31) have the following properties:   

1. 𝜉 is real if and only if 𝑊4.𝑥(𝜉; 𝛽) is real. Moreover, 𝜉 ∈ [−1,1] if and only if 0 ≤ 𝑊4.𝑥(𝜉; 𝛽) ≤ 𝑊4.𝑥(−1; 𝛽). 

2. If ∥ 𝜉 ∥= 1 and ℑ(𝜉) > 0(< 0), then ℑ(𝑊4.𝑥(𝜉; 𝛽) < 0(> 0).  

 

Proof. It is enough to prove the sufficiency of both statements.   

1. Thanks to Lemma 4.1 that 𝑊4.𝑥(𝜉, 𝛽) is real if and only if the factors  

 (1 − 𝜉)𝛽 , 𝑃(𝜉) and 𝑄4.𝑥(𝜉) are all real. Hence, 𝜉 is real. 

2. If −1 ≤ 𝜉 ≤ 1, we have 0 ≤ 1 − 𝜉 ≤ 2. Clearly, then, (1 − 𝜉)𝛽 is decreasing. 

Writing 𝑃(𝜉), 𝑄4.1(𝜉) and 𝑄4.2(𝜉) as polynomial of (1 − 𝜉), we get  

 𝑃(𝜉) = 1 +
𝛽

2
(1 − 𝜉) +

𝛽(𝛽+2)

8
(1 − 𝜉)2 +

𝛽(𝛽+2)(𝛽+4)

48
(1 − 𝜉)3, 

 𝑄4.1(𝜉) = 1 + 𝑎2(1 − 𝜉)2 + 𝑎2(1 − 𝜉)3, 
 𝑄4.2(𝜉) = 1 + 𝑎2(1 − 𝜉)2 + 𝑎2(1 − 𝜉)3 − 2𝑎2(1 − 𝜉)4, 

Noticing that  
𝛽(𝛽+2)(𝛽+4)

48
> 𝑎2 for NFLMM4.1, we immediately see that 

𝑃(𝜉)

𝑄4.1(𝜉)
 is also decreasing. Hence, 𝑊4.1(𝜉; 𝛽) is 

decreasing and 𝑊4.1(1; 𝛽) = 0 ≤ 𝑊4.1(𝜉; 𝛽) ≤ 𝑊4.1(−1; 𝛽). 

As for NFLMM4.2, 𝑄4.2(𝜉) is of degree 4 having an additional term with a negative coefficient. Hence, it is increasing. 

Therefore, 𝑊4.2(𝜉; 𝛽) is decreasing and thus, 𝑊4.2(1; 𝛽) = 0 ≤ 𝑊4.2(𝜉; 𝛽) ≤ 𝑊4.2(−1; 𝛽). ∎ 

 

Theorem 4.3 The unstable regions of NFLMM4.1 and NFLMM4.2 are bounded and symmetric about the real axis for 

0 < 𝛽 ≤ 1.  

  

Proof. For the boundedness, we see that the numerator part of 𝑊(𝜉; 𝛽), with |𝜉| ≤ 1,  

|(1 − 𝜉)𝛽𝑃(𝜉)| ≤ (1 + |𝜉|)𝛽(|𝑝0| + |𝑝1||𝜉| + |𝑝2||𝜉|2 + |𝑝3||𝜉|3) ≤ 2𝛽(𝑝0 − 𝑝1 + 𝑝2 − 𝑝3) = 2𝛽𝑃(−1), 

where we have used the facts that 𝑝0, 𝑝2 > 0 and 𝑝1, 𝑝3 < 0.  

For the denominator part for NFLMM4.1,  

|𝑄4.1(𝜉)| = |1 + 𝑎2(2 − 5𝜉 + 4𝜉2 − 𝜉3)| ≥ |1 + 2𝑎2 − 𝑎2(5 + 4 + 1))| 

= 1 −
𝛽

3
> 0 for 0 < 𝛽 < 3. 

For NFLMM4.2,  

 |𝑄4.2(𝜉)| = |1 + 𝑎2(3𝜉 − 8𝜉2 + 7𝜉3 − 2𝜉4)| ≥ |1 − 𝑎2(3 + 8 + 7 + 2)| 

= 𝑄(−1) = 1 −
5𝛽

6
> 0 for 0 < 𝛽 < 6/5. 

Hence, for 0 < 𝛽 ≤ 1 and for |𝜉| ≤ 1,  

 |𝑊4.𝑥(𝜉; 𝛽)| =
|1−𝜉|𝛽|𝑃(𝜉)|

|𝑄4.𝑥(𝜉)|
< ∞,    x = 1,2. 

Since 𝑊4.𝑥(𝜉; 𝛽) = 𝑊4.x(𝜉; 𝛽), we immediately see that the unstable regions are symmetry about the real axis. ∎ 

Since the NFLMM4.x are of order 4, the Dahlquist barrier for FIVPs tells us that they are not A-stable [13] . 

 

Therefore, we look for the 𝐴 (
𝜋

2
)-stability of these methods, that is, if the methods are stable in the entire left complex 

plane.  
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Theorem 4.4 There are threshold values 𝛽4.𝑥
∗ ∈ (0,1) such that the methods NFLMM4.x, 𝑥 = 1,2, are 𝐴 (

𝜋

2
)-stable for 

0 < 𝛽 < 𝛽4.𝑥
∗ . 

 

Proof: First note that the genrations functions 𝑊4.x(𝜉; 𝛽) are continuous function in 𝛽, where 𝜉 is fixed.  

Now, for |𝜉| ≤ 1, from (31) with (21), we have 𝑊4.1(𝜉, 0+) = 1 > 0. Hence there exists a neighbohood (0, 𝜖) for 𝛽 

such that 𝑊4.1(𝜉, 𝛽) > 0 for all |𝜉| ≤ 1. 
Again, for 𝜉𝑖 = 𝑖 and 𝛽 = 1, we have  

𝑊4.1(𝜉𝑖 , 1) =
(1 − 𝑖)(𝑝0 + 𝑖𝑝1 − 𝑝2 + 𝑖𝑝3)

1 +
1

24
(2 − 5𝑖 − 4 + 𝑖)

= −0.528 − 3.096𝑖. 

So, ℜ(𝑊4.1(𝜉𝑖 , 1)) = −0.528 < 0. Hence, there is a neighborhood (1 − 𝜖, 1) for 𝛽 such that 𝑊4.1(𝜉𝑖 , 𝛽) < 0.  Let 

𝛽4.1
∗ = max{𝛽 ∶ 𝑊4.1(𝜉, 𝛽) ≥ 0}. Then 0 < 𝛽4.1

∗ < 1. 

 

The proof for 𝑊4.2(𝜉, 𝛽) is analogooius with 𝑊4.1(𝜉𝑖 , 1) = −0.1927 − 3.358𝑖. ∎ 

 

Numerical computation by interval bisection shows that 𝛽4.1
∗ = 0.82960 and 𝛽4.2

∗ = 0.85024912 for the NFLMM4.1 

and NFLMM4.2 respectively. 

 

 
 

Figure 2.  Stability regions of NFLMM4.x for some 𝛽 values. 

 

In Figure 2, the unstable regions of the two methods NFLMM4.x, x=1,2 are shown for different fractional orders 

0 < 𝛽 ≤ 1. The straight lines in the figures represent the stability region boundaries of the methods, where the stability 

regions are shown on the left side of the lines. These lines also correlate to the analytical stability region’s boundary 

Σ𝛽. It is clear from the figure that the unstable regions surpass the A-stable boundaries for all values of 𝛽. Thus, the 

methods are verified to be not A-stable. The regions in blue are the unstable regions for the threshold values 𝛽4,𝑥
∗  which 

indicate 𝐴 (
𝜋

2
)-stable boundaries. 

5.  Comparisons  

In this section, we compare the order 4 NFLMM4.x with FAM3 and FBDF4 for their performances in terms of 

computations and stability. 

5.1 Numerical comparisons 

Consider the linear FIVP used in [9].  

 𝐷𝑡
𝛽

𝑦(𝑡) = 𝑓(𝑡, 𝑦(𝑡)) = 𝜆𝑦(𝑡) + 𝐹(𝑡),   0 ≤ 𝑡 ≤ 1, 0 < 𝛽 ≤ 1,          

with the initial condition 𝑦(0) = 0,   

where 𝐹(𝑡) =
Γ(𝑛+1)

Γ(𝑛+1−𝛽)
𝑡𝑛−𝛽 −

Γ(𝑛)

Γ(𝑛−𝛽)
𝑡𝑛−1−𝛽 + 𝑡𝑛 − 𝑡𝑛−1  with 𝜆 = −1.  

The exact solution is given by: 𝑦(𝑡) = 𝑡𝑛 − 𝑡𝑛−1, where 𝑛 = 5. 
The linear equation was solved by using the schems FAM3, FBDF4, NFLMM4.1 and NFLMM4.2 in (23) and (24) 

with different values of fractional orders 𝛽 = 0.4, 0.6 and 0.8. The problem is computed on the domain [0,1], with 
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𝑁𝑗 = 2𝑗 , 𝑗 = 3,4, . . . ,11 as the number of subintervals and 𝜏𝑗 =
1

𝑁𝑗
 as the step size. The maximum errors 𝐸𝑗 for step 

size 𝜏𝑗 are compared for the methods. The order of the method NFLMM4.1 is computed by the formula  

𝑝𝑗+1 =
𝑙𝑜𝑔(𝐸𝑗+1/𝐸𝑗)

𝑙𝑜𝑔(𝜏𝑗+1/𝜏𝑗)
. 

The orders of other methods are nearly the same and are not presented. 

The results obtained are listed in Table 1, 2 and 3 respectively. 

  

Table 1.  Comparing Maximum errors for 𝛽 = 0.4. 

 

 𝑁𝑗 NFLMM4.1 NFLMM4.2 FBDF4 FAM3  Order  

 8  5.968e-04 2.702e-04  8.327e-04 2.641e-04 - 

16  4.171e-05  1.752e-05  5.952e-05 1.785e-05  3.83859  

32  2.741e-06  1.115e-06  3.947e-06 1.157e-06  3.92775 

64  1.754e-07  7.033e-08  2.537e-07 7.361e-08  3.96556 

128  1.109e-08  4.415e-09  1.607e-08 4.641e-09  3.98317 

256  6.974e-10  2.766e-10  1.011e-09 2.913e-10  3.99167 

512  4.371e-11  1.730e-11  6.341e-11 1.824e-11  3.99585 

1024  2.736e-12  1.082e-12  3.972e-12 1.141e-12  3.99789 

2048  1.711e-13  6.772e-14  2.523e-13 7.147e-14  3.99843 

 

Table 2. Comparing Maximum errors for 𝛽 = 0.6. 

 

 𝑁𝑗  NFLMM4.1 NFLMM4.2 FBDF4 FAM3  Order  

 8  1.161e-04 6.265e-04  1.361e-03 3.429e-04 - 

16  8.129e-05  4.207e-05  9.629e-05 2.288e-05  3.83713 

32  5.334e-06  2.715e-06  6.352e-06 1.474e-06  3.92967  

64  3.411e-07 1.723e-07  4.072e-07 9.346e-08  3.96670  

128  2.156e-08 1.085e-08  2.577e-08 5.884e-09  3.98378  

256  1.355e-09 6.809e-10  1.620e-09 3.691e-10  3.99199  

512  8.494e-11 4.264e-11  1.016e-10 2.311e-11  3.99602 

1024  5.316e-12  2.667e-12  6.370e-12 1.445e-12  3.99812  

2048  3.323e-13  1.663e-13  4.168e-13 9.028e-14  3.99975  

 

Table 3. Comparing Maximum errors for 𝛽 = 0.8.  
 

𝑁𝑗 NFLMM4.1 NFLMM4.2 FBDF4 FAM3  Order 

 8  1.982e-04 1.202e-04  1.972e-03 3.857e-04 - 

16  1.386e-05  8.215e-05  1.385e-04 2.546e-05  3.8374  

32  9.093e-06  5.336e-06  9.102e-06 1.632e-06  3.93067  

64  5.812e-07  3.397e-07  5.823e-07 1.032e-07  3.96753  

128  3.672e-08  2.142e-08  3.681e-08 6.492e-09  3.98425  

256  2.307e-09  1.345e-09  2.314e-09 4.070e-10  3.99222 

512  1.446e-10  8.423e-11  1.450e-10 2.548e-11  3.99611  

1024  9.053e-12  5.272e-12  9.094e-12 1.595e-12  3.99776  

2048  5.701e-13  3.325e-13  6.024e-13 9.947e-14  3.98928  

 

Since all the four methods are of order 4, the computational solutions for all choices of discretization are expected to be 

nearly the same. 

As for the computational cost, the weights of the NFLMM4.x need only a linear combination of the Grunwald 

coefficients 𝑔𝑘
(𝛽)

, that have the simplest computational cost. The weights of FBDF4 obviously require computations 

using Miller’s formula with four prior weights.  

As for the memory requirement, the FAM3 requires keeping all the 𝑓𝑛 values stored during the iteration to be used on 

the right side of scheme (25). The NFLMM4.x require only the last  three or four values of 𝑓𝑛 as in (23) and (24). 

 

5.2 Comparison of stability 

We compare the stability regions of the four implicit FLMMs. The generating functions FBDF4 and FAM3 are 

provided below:  

 𝑊𝐹𝐵𝐷𝐹4(𝜉) = (
25

12
− 4𝜉 + 3𝜉2 −

4

3
𝜉3 +

1

4
𝜉4)

𝛽

 and 𝑊𝐹𝐴𝑀3(𝜉) =
(1−𝜉)𝛽

𝑞0+𝑞1𝜉+𝑞2𝜉2+𝑞3𝜉3,  
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where 𝑞𝑖 , 𝑖 = 0,1,2,3, are given by  

 𝑞0 = 1 −
5

6
𝛽 +

11

48
𝛽2 −

1

48
𝛽3,        𝑞1 =

31

24
𝛽 −

9

16
𝛽2 +

1

16
𝛽3, 

 𝑞2 = −
7

12
𝛽 +

7

16
𝛽2 −

1

16
𝛽3,         𝑞3 =

1

8
𝛽 −

5

48
𝛽2 +

1

48
𝛽3. 

 

 

 

 

  

    

Figure 3. Comparing stability regions for FLMMs of order 4. 

  

Since the FLMM methods with orders greater than 2 are not A-stable, the 𝐴 (
𝜋

2
)-stable and 𝐴(0)-stable could be used 

as comparison tools of those methods. 

As shown in Figure 3, the unstable region for many values of 𝛽 is on the right side of the complex plane. 

However, there are some 𝛽 values for which the unstable region also extends to the left side, such as 𝛽 = 1. The 

intervals for 𝛽 where the FLMMs are 𝐴 (
𝜋

2
)-stable were calculated numerically. The 𝛽∗ values for which the intervals 

0 < 𝛽 ≤ 𝛽∗ gives the 𝐴(
𝜋

2
)-stability are given in Table 4. 

 

Table 4. Threshold 𝛽∗ for 𝐴 (
𝜋

2
)-stability. 

 

    FAM3   NFLMM4.1   FBDF4   NFLMM4.2  

 0.4384471   0.82960   0.843895   0.85024912  

  

For the 𝐴 (
𝜋

2
)-stability the NFLMM4.2 has the highest interval for 𝛽 followed by FBDF4, NFLMM4.1 and FAM3. The 

lower interval size is gained for FAM3. Also note that as 𝛽 approaches the 𝐴 (
𝜋

2
)-stability bound 𝛽∗, FAM3’s A(0)-

stability vanishes. For 𝛽 > 𝛽∗ the stability region becomes bounded and falls on the left complex plane, resulting in 

only conditional stability. 

7. Conclusion 

We analyzed and compared the new fractional linear multistep methods NFLMM4.1 and NFLMM4.2 with 

FAM3 and FBDF4 methods of order 4. We see that NFLMM4.2 is 𝐴 (
𝜋

2
)-stable over a wider fractional-order interval 

while FAM3 displays 𝐴 (
𝜋

2
)-stablity for a small range of 𝛽 values. Furthermore, the proposed methods have lower 

computing cost and minimal storage compared to FAM3. 
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