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ABSTRACT: We analyzed two implicit fractional linear multi-step methods of order four for solving fractional initial
value problems. The methods are derived from the Grunwald-Letnikov approximation of fractional derivative at a non-
integer shift point with super-convergence. The weight coefficients of the methods are computed from fundamental
Giunwald weights, making them computationally efficient when compared with other known methods of order four.
We also show that the stability regions are larger than those of the fractional Adams-Moulton and fractional backward
difference formula methods. We present numerical results and illustrations to verify that the theoretical results obtained
are indeed satisfied.
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1. Introduction

Consider the fractional initial value problem (FIVP)

Dly® = f(ty®), t=t, 0<B<1, )
y(to) = Yo, 2

where Dfi is the left Caputo fractional derivative operator defined in Section 2, f(t,y) is a function satisfying the
Lipschitz condition in the second argument y which guarantees a unique solution to the problem [1,2]. When g =1,
problem (1) with (2) becomes the classical initial value problem(I\VVP) with first order derivative.

Many numerical schemes for approximately solving the FIVP (1) have been proposed in the recent past. The
numerical methods referred to as fractional linear multi-step methods (FLMMSs) are of particular interest.
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The simplest and most highly investigated FLMM is the fractional Euler method (also known as the Griinwald-
Letnikov method) obtained by approximating the fractional derivative Dﬁ)y(t) in (1), after some modifications, by the
Grunwald-Letnikov (GL) approximation (See Section 2).

Converting the FIVP (1) in the form of Volterra integral equation (VIE) of the second kind, Lubich [3—5]
proposed a class of higher-order FLMMs for the VIE as convolution quadrature rules. The quadrature coefficients of
the FLMMs are obtained from the fractional order power of some rational polynomials from the linear multistep
methods(LMMs) for classical 1VVPs. Moreover, Lubich [5], suggested a set of implicit fractional backward difference
formula (FBDF) methods as a subclass of these FLMMs.

Galeone and Garrappa [6] investigated another subclass of implicit FLMMs and called them fractional Adams-Moulton
methods (FAM), also suggested by Lubich in [5]. They also constructed in [7,8] some explicit FLMMs of this subclass
and called fractional Adams-Bashforth methods (FAB). Another set of explicit FLMMs was constructed by Bonab and
Javidi [9].

Aceto [10] constructed another subclass of FLMMs by approximating Lubich’s generating functions of the
FBDFs by Pade approximations. However, in this class, the orders of the FLMMSs are reduced compared to the source
FLMMs.

The present authors proposed two new implicit FLMMs of order 4 with preliminary properties and tests
presented in [11]. The methods use the super convergence of the GL approximation. Earlier, the authors used super
convergence to derive an FLMM of order 2 in [12].

This paper analyzes the two implicit FLMMs of order 4 presented in [11]. As FLMMs of orders higher than two
are not A-stable according to Dahlquist’s second barrier for FIVPs [13], we analyze the stability of the methods
through A(mr/2)-stability and unconditional stability. We also show that the methods are better in stability than the
FAMA4 of order 4 and one of the methods is better than FBDF4 of order 4.

The computational costs of these methods have also been compared with other order 4 methods and show that the
new FLMMs are computationally competitive with the FAM and simpler than that the FBDF4.

This paper is organized as follows. Section 2 gathers the necessary definitions, theories, and results on factional
calculus and numerical solutions of FIVPs. In Section 3, we give the main results by constructing the new FLMMs
along with an algorithm to compute approximate solutions using these methods. In Section 4, we analyze the stability
of the methods. Section 5 compares our methods with other known methods of order 4. In Section 6, we draw
conclusions.

2. Preliminaries

The fundamental definitions of fractional derivatives in fractional calculus are typically presented as follows:
Definition 2.1 Let y(t) be a function defined in the interval domain [t,, T] and is sufficiently smooth to hold the
following:

1. Wheny € L,([t,, T]), the Riemann-Liouville (RL) fractional integral of order § > 0 of y(t) is defined as

B L
JPy(t) =——=| (t—s)F1y(s)ds. 3
£, Y (®) X0) to( )Py (s) @)
2. The RL fractional derivative of order 8 > 0 is defined by
1 m t
/B - _ m—f—-1 _ <
BEYO) = o= jt @9y, mo1sp<m @)

where m = [B] is the integer ceiling of B, and I'(-) denotes Euler’s gamma function. D™ = ;—Tn is the m-th order

differential operator.
3. The Caputo derivative of order § > 0 is defined by

B 1 ‘ B=1,,(m)
D y(t) = ——< | (t—s)" P 1lylM(s)ds, m—-—1<f<m
to rm—p)J, ®)
4. The Griinwald-Letnikov definition of fractional derivative is given by
1 [oe]
B — Tim — B —
DEy() =lim—>" gPy(t - ko) (©)
k=0
B _ (_ 1k _TB+1) o ;
where g, = (=1) R are called the Grinwald weights.
5. A shifted form of GL fractional derivative is also available [14]:
- 1w
Df .y = lrgr(}r—,;z 9Pyt - (k- 1)), )
k=0

where r is the shift which is often taken to be an integer, but any real shift is valid.
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Remark: The fractional derivatives given above are called the left fractional derivatives as there are also their right
counterparts. For details see [15,16] and the references therein.

The fractional integrals and derivatives are related such that the RL and Caputo derivatives are two left inverses of the
RL integral [1]:

DY Jhy(®) = DEJE y(t) = y(©). (8)
However, the two fractional derivatives in (4) and (5) are related by
DY y(t) = DY [y(®) = Tmoa(E = to)., ¥ € C™Meo, T],  y™ € [Mt,T),

where

m-—1 Kk

t
Tna@®) = Y 2700,
k=0
Hence, the RL and Caputo fractional derivatives are equal under the homogeneous initial conditions y®(t,) = 0,k =
0,1,..,m—1[1, 2]. The GL fractional derivative in (6) and its shifted counterpart in (7) are also equivalent to the
Caputo derivative under homogeneous conditions and are often utilized as tools for numerical approximations of
fractional derivatives.

2.1 Approximation of fractional integrals and derivatives

To approximate the fractional integrals and derivatives, the involving domain [t,, T] is discretized into a
computational domain with uniformly spaced discrete points ¢, = t, + k7, k = 0,1, ..., N with a fixed step size t =
(T —to)/N. The fractional integral can be approximated by using a quadrature rule as the sum of weighted function
values at the discrete points of the involved integrating domain. Common quadrature rules used in this sense are the
rectangular and trapezoid rules [17-19]. Lubich [5] introduced a convolution quadrature approximation formula for the
fractional integral

JEy®) =) ot - ko),
k=0

. . . . . . B
where the weights w,, are obtained from the power series expansion of the generating function w(¢) = (ZS;S) with

(p, o) being the pair of generating polynomials of the LMM for classical 1\VVPs [1]. The order of consistency for the
FLMM is the same as that of the underlying LMM. As for the approximation of fractional derivatives, the fundamental
approximation for the RL fractional derivative is obtained from the GL (or generally the shifted GL) definition by
simply dropping the limit for a fixed step size 7. This gives an order one approximation Sfry(t) with an integer shift r
[5,21].

85,y(t) = 5% 9yt — (k—=m)1) = DEy(8) + 0(D),
where the initial value y, has been subtracted from y(t) to satisfy the homogeneous initial condition so that the
different definitions coincide.
However, for the particular non-integer shift » = /2, the above Grunwald approximation gives order 2 displaying
super convergence [22].

885 ,y(®) =DEy(®) + 0(z?).
Analogous to the convolution quadrature approximation for fractional integral, fractional derivatives can also be
approximated by convolution quadrature formula in a similar form

08,y (t) =77 Lo wiy (t — ko),
where wy, are the coefficients of a generating function W ().
The order of consistency of an FLMM can be obtained from its generating function through the following theorem.

Theorem 2.2 [14,23,24] Let W (&) be the generating function of an approximation in the shifted form of the fractional
derivative Dt‘iy(t),

1 (oo}
0l y(®) = = ) wey(e = (=),
k=0

where y(t) is sufficiently smooth. The order of the shifted approximation with shift r is m if and only if

G(x) = xiBW(e-X)ers =140@E™). )
Moreover, we have

08 y(t) = Dfiy(t) + Tmang’ery(t) + Tm“apHDg)erHy(t) + -, (10)
where a; = a,(B,r) are the coefficients of the series expansion of G(x):

Gx)=1+ Z a; xk.
k=p
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2.2 FLMM scheme
The general form of an FLMM scheme for the FIVP in (1) and (2) is given by

n n
Z PeYn-k = 2 Z Aicfr-io (11)
k=0 k=0

where p,, and g, are the coefficients of the generating functions

n
P =) Pk and g =) ok,
k=0 k=0
and y; and f; denote
yi #y(t) and fi = f(te yi)- (12)
In numerical computations using the FLMMs of order more than one, the intended order m is achieved only for a
certain class of functions, specifically for functions of the form y(t) = t*g(t), @ = m, with g(t) analytic [5].
However, for a« < m, the order is reduced to O(h*) only. To remedy this order reduction, an additional sum is
introduced in (11) to have the approximation scheme
N n

Z Wi Vi t Z W]EB)yn—k = Tﬁz O fr—k- (13)

k=0 k=0 k=0
The starting weights w,, ;, in (13) are to compensate for the reduced order of convergence.
However, computing the starting weights poses many difficulties in practice. Since the starting weights do not
affect the stability or convergence of the solution, we do not include them in the computation and analysis in the
subsequent sections. For some developments on the starting weights, we refer to [20, 26, 27].

2.3 Stability

For the analysis of the stability of an FLMM, consider the linear test problem
Dly(t) =Ay(t), y(to) =y AEC, 0<B<1 (14)

k
for which the analytical solution is y(t) = Ep (AtP)y,, where Eg(t) = Xko m is the Mittag-Leffler function. For

analytical stability, the solution y(t) of the test problem (14) is stable in the sense that the series of y(t) converges in
the region

Iy ={§ € C:larg(§)| > Br/2}.
The unstable region is then the infinite wedge with angle Sm. (See Figure 1).

Analytical Stablilty regionfor 0<g<1 Analytical Stablilty region for g> 1
4 4
2 2
A Unstable Regicn . Unstable Region
stable Region T stabl i = T
0 ~ 5 able Region i
-2 -2
—4 —4
- -2 0 2 4 4 -2 0 2 4

Figure 1. Analytical Stability regions.

For the numerical stability of FLMM, we have the following criteria:

Definition 2.3 Let S be the numerical stability region of an FLMM. For an angle a, measured from the negative real
axis, define the wedge S(a) = {z: |arg(z) — w| < a}. The FLMM is said to be

1. A(a)-stableif S(a) € S

2. A-stableifitis A(m — pm/2) stable.That is, £z < S.

3. A(m/2)-stable when the entire left half of the complex plane is included in S.

4. Unconditionally stable if it is A(0)-stable. That is, the negative real line is included in S.
The stability region of an FLMM is also characterized by its generating function:
Theorem 2.4 [5] The stability region of an FLMM with generating function w(§) is given by

S={WE):[§l > 1} =C\ S5
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where S¢ = {W(&): || < 1} is the unstable region.
3. New FLMMs of order 4

In this section, we give the construction of these methods. Denote by C™(R) the class of functions having
continuous n'" derivatives.

3.1 Necessary Approximations

We need the following preparations.

Lemma 3.1 Lety(t) € C*(R) and h > 0. For u € R, y(t + uh) can be interpolated with order 4 as
y(t + uh) = poy(t) + p1y(t — h) + py(t — 2h) + p3y(t — 3h) + O(h), (15)
where p;,i = 0,1,2,3 are the coefficients of the Lagrange interpolation polynomial approximation for a function of u at
the points y; = 0,—1,—2,—3 given by
+1)(u+2)(u+3 (u+2)(u+3) (u+1)(u+3) (u+1)(u+2)
poz(u )(p+2)(u+3) p__u# u pzuu u p__uu kt2) (16)

6 y P1 2 ’ P2 2 » 3 6

Proof. Consider y(t + ph) as a function of ph interpolated at points ;A = 0, —h, —2h and —3h. Then the coefficients

p; are the Lagrange interpolation basis functions L;(uh) = 1'[]3-:0‘]-# l’:,;l it which reduce to p;,i = 0,1,2,3. The error

of the interpolation is given by E = il‘[f-zo (uh — jR)y®(t + &h) = 0(h4), where & € (=3,0). m

Lemma 3.2 The second derivative of a function f(x) can be approximated by the backward difference forms of order
2as

d? 1
ez (0 =37 (2f () = 5f (e = h) + 4f (x = 2h) — f (x = 3h)) + O(h?) 17

%f(x) = %(Bf(x —h) —8f(x —2h) + 7f(x — 3h) — 2f (x — 4h)) + O(h?). (18)
Proof. Taylor series expansions. m

Lemma 3.3 The shifted GL approximation (7) with shift r =§ has order 2 super convergence in (10) with the

coefficients of the odd order terms a,,,, = 0 for k = 0,1,2, ---. Moreover, we have a, = %.

Proof. The generating function of the GL approximations in (6) and (7) is W (z) = (1 — z)#.
B
The function G (x) = xiﬁ(l — e *)Pe2" in (9) is an even function since

1 B 1 B
G(—x) = W(l —e¥)fe 2" = P (=1)Bef* (1 — e ™)PeFxe2* = G(x).
Hence, the odd order terms of the series expansion of G(x) are zero. Moreover, expanding for the first few terms
revealsay, = 1,a, = LA

24

From Theorem 2.2 again, we have from (10),
B
s* oyt =7 Z 9Py (ta = (k= 5)7) = DLyt + ey () + @, (19)
Writing Dfo” = D Dﬁ we replace the fractional derivative D Y (tn) in (19) by f (£, ¥ (E0)):

Z 9y (tn-i i 5) = e F(n v(6) + 0t D7 £ (0, ¥(5)) + 0(c*). (20)

We approximate y(t,_, + Bt/2) by (15) in Lemma 3.1 with u = 8/2 and t = t,_,. Moreover, approximate the

second derivative in (20) by (17) in Lemma 3.2. Then, we have from (16) with
(B+2)(B+4)(B+6) _ _ BB+9)(B+6) _ B(B+2)(B+6) _ __BB+2)(B+4) 21
=T T T ks s (21)

z g(ﬁ [Py (taie) + D1y (tnre—1) + P2Y ni—z) + D3y (tn_i—3)]

= Tﬁ[f(tn,}’(tn)) + @ 2f (tn, ¥y (tn)) = 5f (tn-1, Y (tn-1)) + 4f (tn—2, ¥ (tn-2))
— f(tn-3Y(tn-3)] + 0(T4+B)- (22)

Dropping the error term, with the notations in (12), equation (22) gives an implicit FLMM scheme
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Z 9P oVt + D1Yn_1-k + PaYn-2—k + P3Vn3i)
k=0
= Tﬁ [fn + a; (zfn - an—l + 4'fn—Z - fn—S)]- (23)

Again, approximating the second derivative in (20) by (18) in Lemma 3.2, with the same operations and notations, we
get another implicit FLMM:

Z 9P oVt + D1Yn_1-k + PaYn-2—k + P3Vn3i)
k=0
= Tﬁ[fn + a2(3fn—1 - 8fn—Z + 7fn—3 - 2fn—4)] (24)

For brevity of presentation, we call these FLMMs in (23) and (24) as NFLMM4.1 and NFLMM4.2 respectively.
3.2 Implementation

We use the following notations:
For a sequence a = {a,}, we denote the finite vector [a;, a;;4, ..., a;] as a;;. For given two sequences a,b, the
convolution of two equal sized vectors a;.;, by, , With j —i+1=m —1+1, as (a;j * by;m) = Z{C:i ay b, _y, where
n=m+i=101+].
Using these notations, the two proposed NFLMMSs can be written as
(Woin * Vo) = Tﬁ(qo:m * fro—mm) (25)
wherey = {y,}, f=1{fi}, 9 ={gr} andw = {w;} with w given by

Wi = Dok + P19k-1 + P2Gk—2 + P3gk-3 =P * Gk-3:6» k=01, ...,
where we have assumed g_, = g_, = g_; = 0. The coefficient vectors p, q are given by

P = [Po, 1, P2, p3] with = B/2, (26)

for NFLMM4.1: q =[1+ 2a,,—5a,,4a,,—a,], m=3, (27)

for NFLMM4.2: q = [1,3a,,—8a,,7a,,—2a,], m =4. (28)
Extracting terms of y,,, we write (25) as

WoVn + (Wl:n * yO:n—l) = QOTBfn + TB(Ql:m * fn—m:n—l)- (29)

First, we consider linear FIVP with f(t,y) = Ay(t) + F(t). Then, equation (29) becomes, after solving for y,,,
In = wo—qolrﬂ [qOTBF" - Sn‘l]'

where F, = F(t,)) and s,_; = Wy * Yom—1) — T° (G1:m * fa—mm—1) Which is independent of y,,.

Algorithm 1: Linear FIVP Solver

1. Input B, 7, y,, function f(t)

Compute g = {g,}, using go = 1,9, = (1 — %)gk_l,k =12,..,N.

Compute the convolutionw =p * g = [(p * gr—m): k = 0,1, ..., N].
Forn=1,2,..,N,
Spe1 = Wi * Yon—1) — Tﬁ(ql:m * foomm-1)

6. yn= Wo—qoAtP [QOTBFn — Sp-a]-
Next, for the nonlinear FIVP, we write equation (29) in the unknown y = y,,:

H(tn, ¥n) + 5p-1 =0, (30)

akrwn

where H(t,y) = woy — qotP £ (¢, y).
We use Newton-Raphson iteration to solve (30) for y,, using the initial seed y, o = y,—1.

The derivative of H(t,y) with respectto y is H, (t,y) = wy — qorﬁfy(t, ),
where f, = :—yf(t, ¥). Then, the algorithm for non-linear FIVP is given by

Algorithm 2: Non-linear FIVP Solver

1. Input B, 7, y,, functions f(t,y), f,, (¢, ¥)

compute g = {g},using go = 1,9, = (1 — %)gk_l,k =12,..,N.

Computew =p *xg = [p * gx_3x:k = 0,1, ..., N].
Define functions H(t,y) = woy — qot? f(t,¥), Hy (t,y) = wo — qoT? £, (t, ¥)
Forn=1,2,...,N,
Spe1 = Wi * Yon—1) — TB(Ql:m * fa-mn-1)

7. yn = Newton(H(t,,y) + su, Hy (tn¥) Yn-1)
where the function Newton(h(y), h'(y), y®) performs the Newton-Raphson iterations to compute the root of h(y) =
0 with initial seed y(©.

ok wd
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4. Analysis of linear stability

The generating functions of the new implicit schemes NFLMM4.1 and NFLMM4.2 are given by:
1=-9PP®) 1=-9PP®)
Wy1(§B) =——F——— —

and W, ; =
Q41(8) #2053 F) Q42(%)
respectively, where P(§),Q,4(&) and Q,,(&) are polynomials for which the coefficients are given by (26),(27) and

(28) repectively. The following elementary results on complex numbers is useful.

(1)

Lemma 4.1 Let z, w, be two distinct non-zero complex numbers. Then, the following are equivalent.
(i) zwisareal.
(if) z/wis real.
(iii) Both z,w are real or z is a real multiple of w.

Proof.(i) & (ii) and (i) < (iii) are obvious. It is enough to prove (i) = (iii).
Suppose that z = x + iy,w = a + ib. Then zw = xa — yb + i(xb + ya) is real implies xb + ya = 0. Then, for a real
a,x/a=—y/b=a =+ 0whichgivesx = aaandy = —ab. Hence z = aiv. m

In order to analyze the stability properties of the methods, we consider the unstable regions {W, (& £):1é| < 1}, x =
1,2 and their properties.

Theorem 4.2 The generating functions W, ,.(§; 8), x = 1,2, in (31) have the following properties:
1. ¢&isrealif and only if W, . (&; ) is real. Moreover, £ € [—-1,1] ifand only if 0 < W, (& 8) < W, (—1; 5).
2. IflIéll=1and 3(¢) > 0(< 0), then I(W, (& 8) <0(> 0).

Proof. It is enough to prove the sufficiency of both statements.
1. Thanksto Lemma 4.1 that W, (&, ) is real if and only if the factors
(1 =8P, P(¥) and Q, (&) are all real. Hence, & is real.
2. If-1<é&<1,wehave0 < 1—¢ < 2. Clearly, then, (1 — &)# is decreasing.
Writing P(£), Q41($) and Q4 () as polynomial of (1 — &), we get

PO =1+50-9+5020a -2 + FE2ED 1 - ¢y,

Qs1(®) =1+ a,(1 - +a,(1-¢)°,
Q42(8) =1+ a,(1—$)* + a,(1—§)° — 2a,(1 — §)*,
Noticing that % > a, for NFLMM4.1, we immediately see that QP(‘Z)
4.1
decreasing and W, ;(1; 8) = 0 < W, (& B) < Wo1 (=1 B).

As for NFLMM4.2, Q,, (&) is of degree 4 having an additional term with a negative coefficient. Hence, it is increasing.
Therefore, W, ,(&; ) is decreasing and thus, W, ,(1; 8) = 0 < W,,(&;8) < Wu(—1;6). m

is also decreasing. Hence, W, ,(&; B) is

Theorem 4.3 The unstable regions of NFLMM4.1 and NFLMM4.2 are bounded and symmetric about the real axis for
0<p<l

Proof. For the boundedness, we see that the numerator part of W (¢; ), with |&] < 1,
|1 =OFPEI < (L +1EDP(Ipol + IpolIE] + Ip21[E1 + Ipsl[S1°) < 2 (o — b1 + P2 — p3) = 2PP(=1),
where we have used the facts that p,, p, > 0 and p;, p; < 0.
For the denominator part for NFLMM4.1,
Qa1 ()] =11+ ay(2 — 5§ + 462 = &3)| = |1+ 2a, — a,(5+ 4 + 1))|
= 1—§>Ofor0<[>’<3.
For NFLMM4.2,
Q421 =11+ a,(3§ — 852 +78° — 2§ > |1 - a,(3+ 8 +7 + 2)|
=Q(-1) = 1—%> 0for0 < B <6/5.
Hence, for0 < g < 1andfor |&]| <1,
Wan(Es P = D oo, =10

Since W, . (&; B) = W, .(&; B), we immediately see that the unstable regions are symmetry about the real axis. m
Since the NFLMM4.x are of order 4, the Dahlquist barrier for FIVPs tells us that they are not A-stable [13] .

Therefore, we look for the A (g)-stability of these methods, that is, if the methods are stable in the entire left complex
plane.
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Theorem 4.4 There are threshold values B, € (0,1) such that the methods NFLMM4.x, x = 1,2, are A (g)-stable for
0< B < Biy

Proof: First note that the genrations functions W, (&; 8) are continuous function in 3, where ¢ is fixed.

Now, for |&] < 1, from (31) with (21), we have W, (&, 0,) = 1 > 0. Hence there exists a neighbohood (0, €) for 8
such that W, ,(¢,8) > 0 forall €] < 1.

Again, for §; = iand g = 1, we have

1—0)(py +ipy —p, + i
W4.1(€i,1)=( )(1p° PP p3)=—0.528—3.096i.

145;@2—51-4+1)
So, R(W,1(&;,1)) = —0.528 < 0. Hence, there is a neighborhood (1 —¢,1) for B such that W, (¢, 8) < 0. Let
Bai=max{f : W,,(&,8) = 0}. Then 0 < B;; < 1.

The proof for W, , (&, B) is analogooius with W, ;(§;,1) = —0.1927 — 3.358i. m

Numerical computation by interval bisection shows that 8;; = 0.82960 and S;, = 0.85024912 for the NFLMM4.1
and NFLMM4.2 respectively.

Unstabilit},r REgiDﬂS for NFLMM4.1 Unstability RE'gi{JI"IS for NFLMM4 .2
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Figure 2. Stability regions of NFLMM4.x for some § values.

In Figure 2, the unstable regions of the two methods NFLMM4.x, x=1,2 are shown for different fractional orders
0 < B < 1. The straight lines in the figures represent the stability region boundaries of the methods, where the stability
regions are shown on the left side of the lines. These lines also correlate to the analytical stability region’s boundary
Zg. Itis clear from the figure that the unstable regions surpass the A-stable boundaries for all values of §. Thus, the
methods are verified to be not A-stable. The regions in blue are the unstable regions for the threshold values f; ,, which

indicate 4 (g)—stable boundaries.

5. Comparisons

In this section, we compare the order 4 NFLMM4.x with FAM3 and FBDF4 for their performances in terms of
computations and stability.

5.1 Numerical comparisons

Consider the linear FIVP used in [9].
Dly(t) = f(t,y(®)) = Ay(t) +F(t), 0<t<1,0<B<1,
with the initial condition y(0) = 0,

_ _Tnt1) - ') . n-1- n n-1 \yi —
WhereF(t)—mt B—mt Bpn—t¢ with A = —1.
The exact solution is given by: y(t) = t™ — t" 1, where n = 5.
The linear equation was solved by using the schems FAM3, FBDF4, NFLMM4.1 and NFLMM4.2 in (23) and (24)
with different values of fractional orders f = 0.4,0.6 and 0.8. The problem is computed on the domain [0,1], with
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N; = 2/, j =34,...,11 as the number of subintervals and T = Ni as the step size. The maximum errors E; for step
J
size 7; are compared for the methods. The order of the method NFLMM4.1 is computed by the formula
_ log(E;+1/E))
log(Tj+1/Tj).
The orders of other methods are nearly the same and are not presented.
The results obtained are listed in Table 1, 2 and 3 respectively.

Pj+1

Table 1. Comparing Maximum errors for g = 0.4.

N; NFLMM4.1 NFLMM4.2 FBDF4 FAM3 Order

8 5.968e-04 2.702e-04 8.327e-04 2.641e-04 -

16 4.171e-05 1.752e-05 5.952e-05 1.785e-05 3.83859
32 2.741e-06 1.115e-06 3.947e-06 1.157e-06 3.92775
64 1.754e-07 7.033e-08 2.537e-07 7.361e-08 3.96556
128 1.109e-08 4.415e-09 1.607e-08 4.641e-09 3.98317
256 6.974e-10 2.766e-10 1.011e-09 2.913e-10 3.99167
512 4.371e-11 1.730e-11 6.341e-11 1.824e-11 3.99585
1024 | 2.736e-12 1.082e-12 3.972e-12 1.141e-12 3.99789
2048 | 1.711e-13 6.772e-14 2.523e-13 7.147e-14 3.99843

Table 2. Comparing Maximum errors for § = 0.6.

N; NFLMM4.1 NFLMM4.2 FBDF4 FAM3 Order

8 1.161e-04 6.265e-04 1.361e-03 3.429e-04 -

16 8.129e-05 4.207e-05 9.629e-05 2.288e-05 3.83713
32 5.334e-06 2.715e-06 6.352e-06 1.474e-06 3.92967
64 3.411e-07 1.723e-07 4.072e-07 9.346e-08 3.96670
128 2.156e-08 1.085e-08 2.577e-08 5.884e-09 3.98378
256 1.355e-09 6.809e-10 1.620e-09 3.691e-10 3.99199
512 8.494e-11 4.264e-11 1.016e-10 2.311e-11 3.99602
1024 | 5.316e-12 2.667e-12 6.370e-12 1.445¢-12 3.99812
2048 | 3.323e-13 1.663e-13 4.168e-13 9.028e-14 3.99975

Table 3. Comparing Maximum errors for § = 0.8.

N; NFLMM4.1 NFLMM4.2 FBDF4 FAM3 Order

8 1.982e-04 1.202e-04 1.972e-03 3.857e-04 -
16 1.386e-05 8.215e-05 1.385e-04 2.546e-05 3.8374
32 9.093e-06 5.336e-06 9.102e-06 1.632e-06 3.93067
64 5.812e-07 3.397e-07 5.823e-07 1.032e-07 3.96753
128 3.672e-08 2.142e-08 3.681e-08 6.492e-09 3.98425
256 2.307e-09 1.345e-09 2.314e-09 4.070e-10 3.99222
512 1.446e-10 8.423e-11 1.450e-10 2.548e-11 3.99611
1024 | 9.053e-12 5.272e-12 9.094e-12 1.595e-12 3.99776
2048 | 5.701e-13 3.325e-13 6.024e-13 9.947e-14 3.98928

Since all the four methods are of order 4, the computational solutions for all choices of discretization are expected to be
nearly the same.

As for the computational cost, the weights of the NFLMM4.x need only a linear combination of the Grunwald

coefficients g,(f), that have the simplest computational cost. The weights of FBDF4 obviously require computations

using Miller’s formula with four prior weights.
As for the memory requirement, the FAM3 requires keeping all the f;, values stored during the iteration to be used on
the right side of scheme (25). The NFLMMA4.x require only the last three or four values of £, as in (23) and (24).

5.2 Comparison of stability

We compare the stability regions of the four implicit FLMMs. The generating functions FBDF4 and FAM3 are
provided below:

= (== 2 _ g3y 1ea) ___aof

Wrppra(§) = (12 4¢ +3¢ 35 + 45 ) and Wranz () = Qo+ q1E+q282+q3E3
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where ¢q;,i = 0,1,2,3, are given by
5 11 1
Q=1-B+B*—B°
7 7 1
G2 =—5B+ BB

_315_ 952,153
q1 _124B 5163 +116ﬂ ’
s =58 — B>+ ;B>
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Figure 3. Comparing stability regions for FLMMs of order 4.

Since the FLMM methods with orders greater than 2 are not A-stable, the A (g)—stable and A(0)-stable could be used

as comparison tools of those methods.
As shown in Figure 3, the unstable region for many values of g is on the right side of the complex plane.
However, there are some S values for which the unstable region also extends to the left side, such as g = 1. The

intervals for 8 where the FLMMs are A (g)-stable were calculated numerically. The g* values for which the intervals
0 < B < B* givesthe A(g)—stability are given in Table 4.

Table 4. Threshold g* for A (g)-stability.

FAM3
0.4384471

NFLMM4.1
0.82960

FBDF4
0.843895

NFLMM4.2
0.85024912

For the A (g)—stability the NFLMM4.2 has the highest interval for g followed by FBDF4, NFLMM4.1 and FAM3. The

lower interval size is gained for FAM3. Also note that as 8 approaches the A (%)—stability bound B*, FAM3’s A(0)-

stability vanishes. For g > B* the stability region becomes bounded and falls on the left complex plane, resulting in
only conditional stability.

7. Conclusion

We analyzed and compared the new fractional linear multistep methods NFLMM4.1 and NFLMM4.2 with
FAM3 and FBDF4 methods of order 4. We see that NFLMM4.2 is A (g)-stable over a wider fractional-order interval

while FAM3 displays A G)—stablity for a small range of B values. Furthermore, the proposed methods have lower
computing cost and minimal storage compared to FAM3.
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