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ARTICLE HISTORY ABSTRACT
In-situ location of precious stones from the mineral-rich zones in parts of Lafiagi (Sheet

Recelved 24 June 203 203) and Pategi (Sheet 204) areas of Bida basin, central Nigeria was carried out. It was

gust 2023 . R i . - .

Accepted 4September 2023 aimed at identification of the structures that usually host precious stones and then locating
them in these areas. This work involved the qualitative and quantitative analysis of
aeromagnetic data and pseudo-gravity transforms using the 3-D Euler Deconvolution
subroutine of Oasis Montaj™ software and the geological information obtained from
reliable sources in the structural interpretation and isolation work. The geological features
in the studied region have been connected to the presence of gemstones known to associate
with them making their location logical and easier than the hit- or-miss approach adopted
by the artesian miners. The results have shown that the abundance of 2D and 3D structures
that are commonly associated with precious minerals as well as the persistence and
continual activities of artisanal miners explain why the study area is rich in mineral
deposits.

Keywords: Precious stones, Mineral-rich, aeromagnetic, pseudo-gravity transforms, 3-D
Euler.
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Introduction

The Gravity and Magnetic (GM) techniques have been
employed worldwide by geoscientists to explore oil and
solid minerals which abound in the subsurface structures of
the earth. The use of Euler Deconvolution as an
interpretation tool to determine source location of potential
field anomalies is well established [1]. Other methods for
structural study include: the estimation of structural index
from low-pass filtered magnetic data [2], 2D Forward
modeling and inversion [3], the estimation of the structural
index [4] amongst others.

Magnetic anomalies are difficult to analyze and

interprete because they are not always located in the vertical
direction of the perturbing bodies. The complexity of the
magnetic field and of its anomaly-to-lithology relationship
often complicates interpretation. The amplitude of the
anomalies is dominated by the magnetic bodies that are
present in the shallowest geologic structures. Convectional
filtering methods smear out the shallow sources and are not
capable of separating the lower amplitude magnetic
anomalies associated with the deeper magnetic source rocks
[5].
On pseudogravity transformation, [6] explained the
significance of employing methods to transform dipole
anomalies into monopoles, aiming to enhance the
interpretability of the data; [5] explained that ‘Poisson’s
theorem relates linearly the derivative of the gravity taken
along the total magnetization distributions. From this
theorem, two very useful functional transformations for
magnetic anomalies, the reduction-to-pole (RTP) and the
pseudogravity (PSG) vertical integration, were formulated
by Baranov.” However, [7] explained that, for area at low
geomagnetic latitude, that is very close to the geomagnetic
equator, the best practice is to reduce its aeromagnetic data
to the geomagnetic equator. Consequently, the computation
of a pole-reduced magnetic field, free of procedural
artefacts, is problematic [8] and the best solution is to reduce
the aero-magnetic data to the geomagnetic equator ([9, 7]).

Among other reasons, the global significance of this
work is that gemstones (e.g. diamonds and coloured stones
such as rubies, emeralds and sapphires) are rapidly gaining
popularity, as evidenced by their increasing use in
engagement rings, the increase in their value makes the need
to verify their authenticity and source imperative. Other
gemstones include: quartzite (amethyst, citine and
ametrine), the garnets, moonstone, apatite, spinel, tanzanite,
tourmaline, topaz and zircon. Some of these gemstones form
in pegmatites and hydrothermal veins that are genetically
related to igneous rocks. The jasper, malachite, opal and
zircon are formed in sedimentary rocks while the beryls,
jade, turquoise, spinel, ruby and sapphire are formed in
metamorphic rock [10].

Analyzing the geological features in the studied region and
connecting them to the presence of gemstones is the goal of
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this research. Some applications are well known to describe
how geophysical techniques can be used in the exploration
for gemstone deposits. For example, exploration and
delineation of diamond-bearing kimberlites using both
regional and detailed geophysical techniques has been
accomplished for decades [11, 12, 13], the use of 3D Euler
deconvolution in the detection or exploration for tanks and
drums (or metalliferous bodies) ([13, 14], etc.

1.1 Location, Geomorphology and Regional Geology

The study area covers parts of Lafiagi (Sheet 203) and
Pategi (Sheet 204) within the Bida Basin, central Nigeria
(Figure 1). A Sheet comprises of % degree by Y% degree
contour map on a scale of 1:100,000. The study area is
bounded by latitudes 8°40° and 8°51° N and longitudes 5°00°
and 5° 23’ E with an area extent of approx. 896.6 km? in a
part of Lafiagi (Sheet 203) and latitudes 8°30° and 9° 00’ N
and longitudes 530 and 6° 00’ E with an area extent of
approx. 3,107 km? in the Pategi (Sheet 204) area of Bida
basin, central Nigeria. The vegetation is of the Guinea
savannah type with two distinct seasons (rainy and dry) [15]
with tropical Guinea type climate [16].

The Bida Basin is a NW-SE trending embayment
perpendicular to the main axis of the Benue Trough and the
Niger Delta Basin of Nigeria. The thin sedimentary cover
overlying the Basement rock in this transition environment
is said to be responsible for the low depth to sources along
magnetic profiles [17]. The regional structural evolution of
the basin has been a subject of debate for long and
satisfactory clarification about its tectonostratigraphic
evolution is still in contention ([18, 19]). A possible
maximum depth value of middle Niger Basin sediments has
been estimated to be generally around 1000 m [20].

Lineaments are major topographical features or
geological structures that could be of regional extent usually
in linear or curvelinear continuous or discontinuous over an
entire length. Lineaments may result from faults, joints,
folds, contacts or other geological reasons, and are found in
igneous, sedimentary and metamorphic rocks. Lineament-
mineral association is possible through the process of
mineralization [21]. Good correlation exists between areas
of high lineament density and areas where there is
occurrence of most minerals such as gold, iron ore,
cassiterite, tantalite, clay and uranium [21, 22].
‘Southwestern Nigeria has a number of gemstone
occurrences that have been noted. Pegmatite, which occurs
as near horizontal or vertical dykes and intrudes earlier
Precambrian lithologies, is the primary host rock. Given the
significant profit margin that may be realized, investment
potential in diamonds is highly favourable.
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Figure 1. Simplified Geological Map of Lafiagi and Pategi regions (After [24]).

However, the current strategy for exploration and
exploitation needs to be thoroughly examined in order to
realize the greatest benefits’ [23].

The present study has been carried out to locate the
structures known to host gemstones and to estimate their
depth and geometry in the Lafiagi (Sheet 203) and Pategi

2. Materials and Methods

2.1 Data Source and Analysis

The aeromagnetic data of Lafiagi (Sheet 203) and
Pategi (Sheet 204) was procured from the Nigeria
Geological Survey Agency (NGSA), Abuja, Nigeria. The
survey which was aimed at mineral and ground water
development was collected at Flight Height of 80 m, Flight
line spacing of 500 m, and Tie line spacing of 2000 m. The
Flight Line direction was NW - SE whereas the Tie Lines
were NE - SW. For ease of processing, the data was stripped
of a common value of 32,000 nT. Data collection for this
area was done in 2006, so a 2005 epoch International
Geomagnetic Reference Field (IGRF) was used to
calculate Inclination and Declination as follows: Field
Strength 33129.9632nT; Inclination -6.87339275;
Declination = -2.51357917.

The total field aeromagnetic map of Lafiagi (Sheet 203)
and Patigi (Sheet 204) (Figure 1), which is about 55.74 km
by 55.74 km each in dimension were mapped and data
collected at a grid spacing of 100 m yielding approx. 310,695
values per sheet. Crustal anomalies are much wider than 200
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(Sheet 204) areas using 3D Euler Deconvolution method
[25] of aeromagnetic data and their pseudogravity
transforms. The present research has not only removed the
hit-and-miss approach by the artesian miners but it has
offered a guide to potential prospective zones where
commercial deposits could be found.

m [26] imposed by the above spacing, and therefore lie in a
frequency range for which computation of errors arising
from aliasing does not occur with a 100 m grid spacing.
Previous works with crustal magnetic anomalies [27] show
that this spacing is suitable for interpretation of magnetic
anomalies arising from regional structures.

Figure 2 is the Total Magnetic Intensity (TMI) map of
the study area. The map emphasizes the intensities and the
wavelengths of the local anomalies that reveal information
on the geometry, strike, contacts between rocks and
intensities of magnetization within the study area. Several
anomalies can be referred to distinct magnetic zones. Figures
3 (@) and (b) are the colour-shaded residual magnetic
intensity anomaly data and colour-shaded reduced-to-pole
(RTP) maps respectively.

Any three-dimensional function f (x,y,z) is said to be
homogeneous of degree n if the function obeys the
expression [30]:

f (tx, ty,tz)=t" f (x,V,2) €))

From this it can be shown that the following (known as
Euler’s equation) is also satisfied [30]:

af

nf 2
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shown that a magnetic contact will yield an index of 0.5
provided that an offset A is introduced to incorporate an
anomaly amplitude, strike and dip factors [30]:

[29] has shown that simple magnetic and gravity models
conform to Euler’s equation. The degree of homogeneity, n,
can be interpreted as a structural index (SI). [25], have

A= x)Trly v a2 ®
- o/ 5x Y Yo ay 0/ 9z

Given a set of observed total field data, we can determine an equations for a given index n by least-squares inversion of
optimum source location (X,,Y,,2,) by solving Euler’s ~ the data.
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Figure 2. Aeromagnetic map of Lafiagi and Pategi study area (After [21]). (Inset is the geological map of the Nupe Basin).
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Figure 3. (a) Colour-shaded residual magnetic intensity anomaly data, with colour shading highlighting linear structural
features especially at the central part of the study area (After [24]). Note, at low-latitude regions such as the study area, magnetic
sources are usually characterized by magnetic low anomalies. (b) Colour-shaded reduced-to-pole (RTP) map computed from
the residual total magnetic intensity map of the study area (After [24]). The colour shading highlights linear structural features
which are shown in areas represented within the yellow dashed lines on the RTP map.

3. Results and Discussions

3.1 Zone Coloured Euler Solutions for Different
Geologic Structures

The 3-D Euler Deconvolution processing routine is an
automatic location and depth determination software
package for gridded magnetic and gravity data. The depths
are displayed as a grid and are based on source parameters
of the following source models: contacts (faults), thin sheets
(dykes) or horizontal cylinders. The relationship between
structural index (n), type of magnetic/gravity model and
position of the calculated depth as described by Hsu [32] is
summarized as: SI (n) =0 (Contact with large depth extent
(magnetic), Sill/Dyke/Step (gravity)); n = 0.5 (Contact with
small depth extent (magnetic), Ribbon (gravity)); n = 1.1
(Thin prism with large depth (magnetic), Pipe (gravity)); n
= 2.0 (Vertical or Horizontal Cylinder (magnetic), Sphere
(gravity)) and n= 3.0 (Sphere (magnetic)). The structural
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index for gravity model is one less than that of magnetic and
the maximum for gravity is 2.

In the Lafiagi and Pategi study areas, Figures 4a and
6a show the results obtained for structural index of 2.0 (i.e.
deep seated dyke/ribbon and sill model; magnetic) of 3D
Euler Deconvolution, which has been used worldwide to
detect or explore Kimberlite pipe which is well known for
hosting large quantity of minerals (diamonds and garnet) and
rocks (peridotite and xenoliths) ([12], [13]). Figures 5a and
7a show the results obtained for structural index of 3.0 (i.e.
sphere or dipole model; magnetic) in 3D Euler
Deconvolution, which has been used worldwide to detect or
explore tanks and drums (or metalliferous bodies) ([13],
[14]). Many of these pipe-like and spherical features are
found all over the area, confirming that the area is very rich
in mineral resources.
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In the Lafiagi and Pategi study areas, Figures 4b and
6b show the results obtained for structural index of 1.1 (i.e.
pipe model: gravity) in 3D Euler Deconvolution, which has
been used worldwide to detect or explore Kimberlite pipe
which is well known for hosting large quantity of minerals
(diamonds and garnet) and rocks (peridotite and xenoliths)
([12], [13]). Figures 5b and 7b show the results obtained for

30?4

|
535"

1
§°30°

Depth (m) s 54 T sone 2w
-397.4 -381.0 -3633 -3452 -3249 -300.7 -2545
[ m— T I immm——_____ mm]

Sp Sphere

(@)

9o
[
|
ol

558

structural index of 2.0 (i.e. sphere or dipole model; gravity)
in 3D Euler Deconvolution, which has been used worldwide
to detect or explore tanks and drums (or metalliferous
bodies) ([13], [14]). Many of these pipe-like and spherical
features are found all over the area, confirming that the area
is very rich in mineral resources.
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5. Conclusions

This research has identified the structures that usually
host gemstones and isolated them in parts of Lafiagi (Sheet
203) and Pategi (Sheet 204) study areas of Bida basin,
central Nigeria using aeromagnetic data and pseudo-gravity
transforms. The geologic structures which range from pipe
to sphere are found in large quantity in the study area. The
structural indices of 2.0 (i.e. vertical or horizontal cylinder
model; magnetic) and 1.1 (i.e. pipe and dyke model; gravity)
in 3D Euler Deconvolution have been used worldwide to
detect or explore Kimberlite pipe which is well known for
hosting large quantity of minerals (diamonds and garnet) and
rocks (peridotite and xenoliths), while the structural indices
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