Main Article Content


Two key parameters for RCE photodetectors that govern their suitability for ultrafast optical communication systems are considered. These are the quantum efficiency and the bandwidth efficiency product. A closed analytical form has been derived for quantum efficiency, which incorporates the structural parameters of the photodetector. Based on the simulation results, an optimization and design procedure for these photodetectors has been developed.




Cavity Resonators Photodetectors Photodiodes Quantum Efficiency and Resonant-Cavity-Enhanced Photodetectors.

Article Details


  1. BOTTCHER, E.H., KUHL, D., HIERONYMI, F., DROGE, E., WOLF, T. and BIMBERG, D. 1992. Ultrafast semi-insulating InP:Fe-InGaAs:Fe-InP:Fe MSM photodetectors: Modeling and Performance, IEEE J. Quantum Electron., 28: 2343-2357.
  2. DENTAN, M. and CREMOUX, D.DE. 1990. Numerical solution of the nonlinear response of a p-i-n photodiode under high illumination, J. Lightwave Technol., 8: 1137-1144.
  3. HUMPHREYS, D.A., KING, R.J., JENKINS, D., and MOSELEY, A.J. 1985. Measurement of absorption coefficients of Ga0.47In0.53As over the wavelength range 1.0-1.7μm, Electron. Lett., 21: 1187-1189.
  4. JERVASE, J.A. and BOURDOUCEN, H. 2000. Design of resonant-cavity-enhanced photodetectors using genetic algorithms, IEEE J. Quantum Electron., 36: 325-332.
  5. JERVASE, J.A. and ZEBDA, Y. 1998. Characteristic analysis of resonant cavity enhanced (RCE) photodetectors, IEEE J. Quantum Electron., 34: 1129-1134.
  6. KATO, K. 1999. Ultrawide-Band/High-Frequency Photodetectors'', IEEE Trans. Microwave Theory Tech., 47: 1265-1281.
  7. KISHINO, K., SELIM, M.U., CHYI, REED, J.I., ARSENAULT, L., and MORKOC, H. 1991. Resonant cavity-enhanced (RCE) photodetectors'', IEEE J. Quantum Electron., 27: 2025-2034.
  8. KOVAC, J., UHEREK, F., SATKA, A., JAKABOVIC, J., SRNANEK, R., RHEINLANDER, B., GOTTSCHALCH, V., HASENOHRL, S., NOVAK, J., BARNA, P., BARNA, A. and WOOD, J. 1996. InAlGaAs-InGaAs-InP RCE pin photodiode for 1300nm wavelength region, IPRM'96 Proc., Apr. 21-25, Germany, pp 219-222.
  9. MURTAZA, S.S., NIE, H., CAMPELL, J.C., BEAN, J.C. and PETICOLAS, L.J. 1996. Short-wavelength, high-speed Si-based resonant-cavity photodetectors, IEEE Photon. Technol. Lett., 8: 927-929.
  10. MURTAZA, S.S., TAN, I.-H., BOWERS, J.E., HU, E.L., ANSELM, K.A., ISLAM, M.R., CHELAKARA, R.V., DUPUIS, R.D., STREETMAN, B.G., and CAMPBELL, J.C. 1996, High-finesse resonant-cavity photodetectors with an adjustable resonance frequency, IEEE J. Lightwave Technol., 14: 1081-1089.
  11. ONAT, B.M., GOKKAVAS, OZBAY, M., E., ATA, E.P., TOWE, E., and UNLU, M.S. 1998. 100-GHz resonant cavity enhanced Schottky photodiodes'', IEEE Photon. Technol. Lett., 10: 707-709.
  12. OZBAY, E., SAIFUL ISLAM, M., ONAT, B., GOKKAVAS, AYTUR, M.O., TUTTLE, G., TOWE, E., HENDERSON, R.H., and UNLU, M.S. 1997. Fabrication of high-speed resonant-cavity-enhanced Schottky photodiodes, IEEE Photon. Technol. Lett., 9: 672-674.
  13. SALEM, A.F. and BRENNAN, K.F. 1995. Theoretical study of the response of InGaAs metal-semiconductor-metal photodetectors, IEEE J. Quantum Electron., 31: 944-953.
  14. TAN, I-H., HU, E.L., BOWERS, J.E., and MILLER, B.I. 1995. Modeling and performance of wafer-fused resonant-cavity enhanced photodetectors, IEEE J. Quantum Electron., 31: 1863-1875.
  15. TUNG, H.-H. and LEE, C.-P. 1997. Design of a resonant-cavity-enhanced photodetector for high-speed applications, IEEE J. Quantum Electron, 33: 753-760.
  16. UNLU, M.S. and STRITE, S. 1995. Resonant cavity enhanced photonic devices, J. Appl. Phys., 78: 607-639.
  17. UNLU, M.S., GOKKAVAS, M., ONAT, B.M., ATA, E., OZBAY, E., MIRIN, R.P., KNOPP, K.J., BERTNESS, K.A., and CHRISTENSEN, D.H. 1998. High bandwidth-efficiency resonant cavity enhanced Schottky photodiodes for 800-850 nm wavelength operation, J. Appl. Lett., 72: 2727-2729.
  18. UNLU, M.S., KISHINO, K., LIAW, H.J., and MORKOC, H. 1992. A theoretical study of cavity-enhanced photodetectors with Ge and Si active regions, J. Appl. Phys., 71: 4049-4058.