Main Article Content

Abstract

The transfer of spin angular momentum from a spin polarized current provides an efficient way of reversing the magnetization direction of the free layer of the magnetic tunnel junction (MTJ), and while faster reversal will reduce the switching energy, this in turn will lead to low power consumption. In this work, we propose a design where a spin torque oscillator (STO) is integrated with a conventional magnetic tunnel junction (MTJ) which will assist in the ultrafast reversal of the magnetization of the free layer of the MTJ. The structure formed (MTJ stacked with STO), will have the free layer of the MTJ sandwiched between two spin polarizer layers, one with a fixed magnetization direction perpendicular to film plane (main static polarizer) and the other with an oscillatory magnetization (dynamic polarizer). The static polarizer is the fixed layer of the MTJ itself and the dynamic polarizer is the free layer of the STO.

Keywords

Magnetic random access memory Spin transfer torque Magnetization reversal Magnetic tunnel junction Spin torque oscillator.

Article Details

References

  1. Slonczewski, J.C. Current-driven excitation of magnetic multilayers, Journal of Magnetism and Magnetic Materials, 1996, 159, L1L7.
  2. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current, Physical Review B, 1996, 54, 9353.
  3. Tsoi, M., Jansen, A.G.M., Bass, J., Chiang, W.C., Seck, M., Tsoi, V., and Wyder, P. Excitation of a magnetic multilayer by an electric current, Physical Review Letters, 1998, 80, 281.
  4. Myers, E.B., Ralph, D.C., Katine, J.A., Louie, R.N. and Buhrman, R.A. Current-induced switching of domains in magnetic multilayer devices, Science, 1999, 285, 867-870.
  5. Katine, J.A., F.J. Albert, R.A. Buhrman, Myers, E.B. and Ralph, D.C. Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co/Cu/Co Pillars, Physical Review Letters, 2000, 84, 3149.
  6. Mangin, S., Ravelosona, D., Katine, J.A., Carey, M.J., Terris, B.D. and Fullerton, E.E. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy, Nature Materials, 2006, 5, 210-215.
  7. Law, R., Sbiaa, R., Liew, T. and Chong, T.C. Magnetoresistance and switching properties of Co-Fe/Pd-based perpendicular anisotropy single- and dual-spin valves, IEEE Transactions on Magnetics, 2008, 44, 2612.
  8. Ikeda, S., Miura, K., Yamamoto, H., Mizunuma, K., Gan, H. D., Endo, M., Kanai, S., Hayakawa, J., Matsukura, F. and Ohno, H. A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction, Nature Materials, 2010, 9, 721-724.
  9. Yakushiji, K., Saruya, T., Kubota, H., Fukushima, A., Nagahama, T., Yuasa, S. and Ando, K. Ultrathin Co/Pt and Co/Pd superlattice films for MgO-based perpendicular magnetic tunnel junctions, Applied Physics Letters, 2010, 97, 232508.
  10. Meng, H., Sbiaa, R., Wang, C.C., Lua, S.Y.H. and Akhtar, M.A.K. Annealing temperature window for tunneling magnetoresistance and spin torque switching in CoFeB/MgO/CoFeB perpendicular magnetic tunnel junctions, Journal of Applied Physics, 2011, 110, 103915.
  11. Khalili Amiri, P., Zeng, Z.M., Langer, J., Zhao, H., Row-Lands, G., Chen, Y.-J., Krivorotov, I.N., Wang, J.P., Jiang, H.W., Katine, J.A., Huai, Y., Galatsis, K. and Wang, K.L. Switching current reduction using perpendicular anisotropy in CoFeB–MgO magnetic tunnel junctions, Applied Physics Letters, 2011, 98, 112507.
  12. Wang, C.C., Bin Akhtar, M.A.K., Sbiaa, R., Meng, H., Sunny, L.Y.H., Kai, W.S., Ping, L., Carlberg, P. and Arthur, A.K.S. Size dependence effect in MgO-based CoFeB tunnel junctions with perpendicular magnetic anisotropy, Japanese Journal of Applied Physics, 2012, 51, 013101.
  13. Liu, Y., Yu, T., Zhu, Z., Zhong, H., Khamis, K.M. and Zhu, K. High thermal stability in W/MgO/CoFeB/W/CoFeB/W stacks via ultrathin W insertion with perpendicular magnetic anisotropy, Journal of Magnetism and Magnetic Materials, 2016, 410, 123-127.
  14. Cuchet, L., Rodmacq, B., Auffret, S., Sousa, R.C., Prejbeanu, I.L. and Dieny, B. Perpendicular magnetic tunnel junctions with a synthetic storage or reference layer: A new route towards Pt- and Pd-free junctions, Scientific Reports, 2016, 6, 21246.
  15. Honjo, H., Ikeda, S., Sato, H., Watanebe, T., Miura, S., Nasuno, T., Noguchi, Y., Yasuhira, M., Tanigawa, T., Koike, H, Muraguchi, M., Niwa, M., Ito, K., Ohno, H. and Endoh, T. Origin of variation of shift field via annealing at 400°C in a perpendicular-anisotropy magnetic tunnel junction with [Co/Pt]-multilayers based synthetic ferrimagnetic reference layer, AIP Advances, 2017, 7, 055913.
  16. Sbiaa, R. and Piramanayagam, S.N. Recent developments in dpin transfer torque MRAM, Physica Status Solidi-RRL, 2017, 11, 1700163.
  17. Krivorotov, I.N., Emley, N.C., Sankey, J.C., Kiselev, S.I., Ralph, D.C. and Buhrman, R.A. Time-domain measurements of nanomagnet dynamics driven by spin-transfer torques, Science, 2005, 307, 228.
  18. Rippard, W., Pufall, M., Kaka, S., Russek, S. and Silva, T. Direct-Current Induced Dynamics in Co90Fe10/Ni80Fe20 Point Contacts, Physical Review Letters, 2004, 92, 027201.
  19. Von Kim, J. Spin-Torque Oscillators, in Solid State Physics, Elsevier, 2012, 63, 217-294.
  20. Kiselev, S.I., Sankey, J.C., Krivorotov, I.N., Emley, N.C., Rinkoski, M., Perez, C., Buhrman, R.A. and Ralph D.C. Current-induced nanomagnet dynamics for magnetic fields perpendicular to the sample plane, Physical Review Letters, 2004, 93, 036601.
  21. Bertotti, G., Serpico, C., Mayergoyz, I.D., Magni, A., D’Aquino, M. and Bonin, R. Magnetization switching and microwave oscillations in nanomagnets driven by spin-polarized currents, Physical Review Letters, 2005, 94, 1.
  22. Mistral, Q., Kim, Joo-Von, Devolder, T., Crozat, P. and Chappert, C. Current-driven microwave oscillations in current perpendicular-to-plane spin-valve nanopillars, Applied Physics Letters, 2006, 88(19), 6-9.
  23. Stiles, M. D. and Miltat, J. Spin-transfer torque and dynamics, in Spin Dynamics in Confined Magnetic Structures III. Topics in Applied Physics, Springer, 2006, 101, 225-308.
  24. Kläui, M, H. Ehrke, U. Rüdiger, T. Kasama and R. E. Dunin-Borkowski, D. Backes, L. J. Heyderman, C.A.F. Vaz and J.A.C. Bland, G. Faini and E. Cambril, and W. Wernsdorfer, Direct observation of domain-wall pinning at nanoscale constrictions, Applied Physics Letters, 2005, 87, 102509.
  25. Hayashi, M., Thomas, L., Rettner, C., Moriya, R., Jiang, X. and Parkin, S.S.P. Dependence of Current and Field Driven Depinning of Domain Walls on Their Structure and Chirality in Permalloy Nanowires, Physical Review Letters, 2006, 97, 207205.
  26. Petit, D., Jausovec, A.V., Read, D. and Cowburn, R.P.J. Domain wall pinning and potential landscapes created by constrictions and protrusions in ferromagnetic nanowires, Journal of Applied Physics, 2008, 103, 114307.
  27. Parkin, S.S.P., Hayashi, M. and Thomas, L. Magnetic Domain-Wall Racetrack Memory, Science, 2008, 320, 190.
  28. Huang, S.H. and Lai, C.H. Domain-wall depinning by controlling its configuration at notch, Applied Physics Letters, 2009, 95, 032505.
  29. Bogart, L.K., Atkinson, D., O’Shea, K., Mcgrouther, D. and Mcvitie, S. Dependence of domain wall pinning potential landscapes on domain wall chirality and pinning site geometry in planar nanowires, Physical Review B, 2009, 79, 054414.
  30. Sbiaa, R. and Piramanayagam, S.N. Multi-level domain wall memory in constricted magnetic nanowires, Applied Physics A, 2014, 114, 1347.
  31. Van De Wiele, B., Laurson, L., Franke, K.J.A. and Van Dijken, S. Electric field driven magnetic domain wall motion in ferromagnetic-ferroelectric heterostructures, Applied Physics Letters, 2014, 104, 012401.
  32. Kim, J.S., Mawass, M.A., Bisig, A., Krüger, B., Reeve, R.M., Schulz, T., Büttner, F., Yoon, J., You, C.Y., Weigand, M., Stoll, H., Schütz, G., Swagten, H.J.M., Koopmans, B., Eisebitt, S. and Kläui, M. Synchronous precessional motion of multiple domain walls in a ferromagnetic nanowire by perpendicular field pulses, Nature Communications, 2014, 5, 3429.
  33. Al Bahri, M. and Sbiaa, R. Geometrically pinned magnetic domain wall for multi-bit per cell storage memory, Scientific Reports, 2016, 6, 28590.
  34. Berganza, E., Bran, C., Jaafar, M., Vázquez, M. and Asenjo, A. Domain wall pinning in FeCoCu bamboo-like nanowires, Scientific Reports, 2016, 6, 29702.
  35. Borie, B., Kehlberger, A., Wahrhusen, J., Grimm, H. and Kläui, M. Geometrical Dependence of Domain-Wall Propagation and Nucleation Fields in Magnetic-Domain-Wall Sensors, Physical Review Applied, 2017, 8, 024017.
  36. Jin, T., Kumar, D., Gan, W., Ranjbar, M., Luo, F., Sbiaa, R., Liu, X., Lew, W.S. and Piramanayagam, S.N. Nanoscale compositional modification in Co/Pd multilayers for controllable domain wall pinninng in race track memory, Physica Status Solidi-RRL, 2018, 12, 1800197.
  37. Choi, H.S., Kang, S.Y., Cho, S.J., Oh, I.Y., Shin, M., Park, H., Jang, C., Min, B.C., Kim, S.I., Park, S.Y. and Park, C.S. Spin nano-oscillator-based wireless communication, Scientific Reports, 2014, 4, 5486.
  38. Sbiaa, R. Magnetization reversal dependence on magnetic properties of a spin torque oscillator with in-plane anisotropy free layer and orthogonal polarizer, Current Applied Physics, 2014, 14, 1521.
  39. Sbiaa, R. Magnetization reversal driven by a spin torque oscillator, Applied Physics Letters, 2014, 105, 092407.
  40. Sbiaa, R. Frequency selection for magnetization switching in spin torque magnetic memory, Journal of Physics: D, Applied Physics, 2015, 48, 195001.
  41. Rahman, N. and Sbiaa, R. Thickness dependence of magnetization dynamics of an in-plane anisotropy ferromagnet under a crossed spin torque polarizer, Journal of Magnetism and Magnetic Materials, 2017, 439, 95.