Main Article Content


We consider calibration problems for models of pricing derivatives which occur in mathematical finance. We discuss various approaches such as using stochastic differential equations or partial differential equations for the modeling process. We discuss the development in the past literature and give an outlook into modern approaches of modelling. Furthermore, we address important numerical issues in the valuation of options and likewise the calibration of these models. This leads to interesting problems in optimization, where, e.g., the use of adjoint equations or the choice of the parametrization for the model parameters play an important role.



Adjoints Calibration Jump models Local volatility models Mixed models Partial differential equation (PDE) Stochastic differential equation (SDE) Stochastic volatility models.

Article Details


  1. ACHDOU, Y. and PIRONNEAU, O. 2005. Computational Methods for Option Pricing. SIAM, Philadelphia.
  2. ALEXANDER, C. and NOGUEIRA, L.M. 2008. Stochastic Local Volatility. Available at SSRN:
  3. AMSTER, P., DE NAPOLI, P. and ZUBELLI, J.P. 2009. Towards a generalization of Dupire's equation for several assets. Journal on Mathematical Analysis and its Applications, 355(1): 170-179.
  4. ANDERSEN, L. 2011. Option pricing with quadratic volatility: A revisit. Fin. and Stochastics, 15(2): 191-219.
  5. ANDERSEN, L. and ANDREASEN, J. 1999. Jumping smiles. RISK, 12(11): 65-68.
  6. ANDERSEN, L. and BROTHERTON-RATCLIFFE, R. 1997/1998. The equity option volatility smile: an implicit finite-difference approach. Journal of Computational Finance, 1(2): 5-38.
  7. ANDREASEN, J. and CARR, P. 2002. Put Call Reversal. Manuscript, New York University, New York, USA.
  8. AVELLANEDA, M., FRIEDMAN, C., HOLMES, R. and SAMPERI, D. 1997. Calibrating volatility surfaces via relative-entropy minimization. Applied Mathematical Finance, 4(1): 37-64.
  9. AYACHE, E., HENROTTE, P., NASSAR, S. and WANG, X. 2004. Can anyone solve the smile problem? WILMOTT, 3: 78-96.
  10. BARLE, S. and CAKICI, N. 1998. How to grow a smiling tree. Journal of Financial Eng., 7(2): 127-146.
  11. BATES, D.S. 1996. Jump and stochastic volatility: Exchange rate processes implicit in Deutsche Mark options. Reviews of Financial Studies, 9(1): 69-107.
  12. BEAGLEHOLE, D. and CHEBANIER, A. 2002. Mean-reverting smiles. RISK, 15(4): 95-98.
  13. BENKO, M., FENGLER, M.R., HÄRDLE, W. and KOPA, M. 2007. On extracting information implied in options. Computational Statistics, 22: 543-553.
  14. BENTATA, A. and CONT, R. 2010. Forward Equations for Option Prices in Semimartingale Models. Available at arXiv:
  15. BERESTYCKI, H., BUSCA, J. and FLORENT, I. 2002. Aysmptotics and calibration of local volatility models. Quantitative Finance, 2: 61-69.
  16. BJÖRK, T. 2004. Arbitrage Theory in Continuous Time. 2nd edn., Oxford University Press, Oxford, UK.
  17. BLACHER, G. 2001. A new approach for designing and calibrating stochastic volatility models for optimal delta-vega hedging of exotic options. Conference presentation at Global Derivatives, Juan-les-Pins.
  18. BLACK, F. and SCHOLES, M. 1973. The pricing of options and corporate liabilities. Journal of Political Economy, 81(3): 637-654.
  19. BODURTHA, J.N. 2000. A linearization-based solution to the ill-posed local volatility estimation problem. Techical Report, Georgetown University, USA.
  20. BODURTHA, J. N. and JERMAKYAN, M. 1999. Non-parametric estimation of an implied volatilitiy surface. Journal of Computational Finance, 2(4): 29-61.
  21. BOLLERSLEV, T. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3): 307-327.
  22. BOUCHOUEV, I. and ISAKOV, V. 1999. Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets. Inverse Problems, 15(3): 95-116.
  23. BOYLE, P.P. and LAU, S.H. 1994. Bumping up against the barrier with the Binomial method. Journal of Derivatives, 1(4): 6-14.
  24. BROWN, G. and RANDALL, C. 1999. If the skew fits. RISK, 12(4): 62-65.
  25. BURASCHI, A. and DUMAS, B. 2001. The forward valuation of compound options. Journal of Derivatives, 9(1): 8-17.
  26. CARR, P. and HIRSA, A. 2003. Why be backward? RISK, 16(1): 103-107.
  27. CARR, P. and HIRSA, A. 2007. Forward evolution equations for knock-out options. Pages 195-217 of: FU, M. C., JARROW, R. A., YEN, J.-Y. and ELLIOTT, R. J. (eds), Advances in Mathematical Finance. Birkhäuser, Boston, MA, USA.
  28. COLEMAN, T.F. and VERMA, A. 1996. Structure and efficient Jacobian calculation. Pages 149-159 of: BERZ, M., BISCHOF, C., CORLISS, G. and GRIEWANK, A. (eds), Computational Differentiation: Techniques, Applications, and Tools. SIAM, Philadelphia, USA.
  29. COLEMAN, T.F., LI, Y. and VERMA, A. 1999. Reconstructing the unknown local volatility function. Journal of Computational Finance, 2(3): 77-102.
  30. COLEMAN, T.F., KIM, Y., LI, Y. and VERMA, A. 2001. Dynamic hedging with a deterministic local volatility function model. Journal of Risk, 4(1): 63-89.
  31. COLEMAN, T.F., LI, Y. and WANG, C. 2011. Stable Local Volatility Function Calibration Using Spline Kernel (to appear).
  32. CONT, R. and TANKOV, P. 2004. Financial Modelling with Jump Processes. Chapman and Hall/CRC, Boca Raton, Florida, USA.
  33. CORIELLI, F., FOSCHI, P. and PASCUCCI, A. 2010. Parametrix approximation of diffusion transition densities. SIAM Journal on Financial Mathematics, 1: 833-867.
  34. COX, J.C. and ROSS, S.A. 1976. The valuation of options for alternative stochastic processes. Journal of Financial Economics, 3(1-2): 145-166.
  35. COX, J.C., ROSS, S.A. and RUBINSTEIN, M. 1979. Option pricing: A simplified approach. Journal of Econometrics, 7(3): 229-263.
  36. COX, J.C., INGERSOLL, J.E. and ROSS, S.A. 1985. A theory of the term structure of interest rates. Econometrica, 53(2): 385-407.
  37. CRÉPEY, S. 2003. Calibration of the local volatility in a generalized Black-Scholes model using Tikhonov regularization. SIAM Journal of Mathematical Analysis, 34(5): 1183-1206.
  38. DERMAN, E. and KANI, I. 1994a. Riding on a smile. RISK, 7(2): 32-39.
  39. DERMAN, E. and KANI, I. 1994b. The Volatility Smile and Its Implied Tree. Quantitative Strategies Research Notes, Goldman Sachs.
  40. DERMAN, E. and KANI, I. 1998. Stochastic implied trees: Arbitrage pricing with stochastic term and strike structure of volatility. International Journal of Theoretical and Applied Finance, 1(1): 61-110.
  41. DUFFIE, D., PAN, J. and SINGLETON, K. 2000. Transform analysis and asset pricing for affine jump-diffusions. Econometrica, 68(6): 1343-1376.
  42. DUFFY, D.J. 2006. Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach. John Wiley & Sons, Chichester, UK.
  43. DUMAS, B., FLEMING, J. and WHALEY, R.E. 1998. Implied volatility functions: Empirical tests. Journal of Finance, 53(6): 2059-2106.
  44. DUPIRE, B. 1994. Pricing with a smile. RISK, 7(1): 18-20.
  45. DUPIRE, B. 1996. A unified theory of volatility. Discussion paper Paribas Captital Markets. Preprint in "Derivatives Pricing", edited by P. Carr, 2004 (Risk Books, London, UK).
  46. EGGER, H. and ENGL, H.W. 2005. Tikhonov regularization applied to the inverse problem of option pricing: Convergence analysis and rates. Inverse Problems, 21(3): 1027-1045.
  47. FENG, L. and LINETSKY, V. 2008. Pricing options in jump-diffusion models: An extrapolation approach. Operations Research, 56(2): 304-325.
  48. FENGLER, M.R. 2005. Semiparametric Modeling of Implied Volatility. Springer-Verlag, Berlin, Germany.
  49. FENGLER, M.R. 2009. Arbitrage-free smoothing of the implied volatility surface. Quant. Fin., 9(4): 417-428.
  50. FRIEDMAN, A. 1964. Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs, New Jersey, USA.
  51. GATHERAL, J. 2006. The Volatility Surface - A Practitioner's Guide. John Wiley & Sons, Hoboken, New Jersey, USA.
  52. GERLICH, F., GIESE, A.M., MARUHN, J.H. and SACHS, E.W. 2010. Parameter identification in stochastic volatility models with a feasible point SQP algorithm. Computational Optimization and Applications, 1-25.
  53. GIESE, A.M., KAEBE, C., MARUHN, J.H. and SACHS, E.W. 2007. Efficient calibration for problems in option pricing. PAMM, 7(1): 1062601-1062602.
  54. GILES, M.B. and GLASSERMAN, P. 2006. Smoking adjoints: Fast Monte Carlo greeks. RISK, 19: 88-92.
  55. GILES, M.B. and PIERCE, N.A. 2000. An introduction to the adjoint approach to design. Flow, Turbulence and Combustion, 65(3-4): 393-415.
  56. GLASSERMAN, P. 2003. Monte Carlo Methods in Financial Engineering. Springer-Verlag, New York, USA.
  57. GLOVER, J. and ALI, M.M. 2011. Using radial basis functions to construct local volatility surfaces. Applied Mathematics and Computation, 217(9): 4834-4839.
  58. GRIEWANK, A. and WALTHER, A. 2008. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. 2nd edn. SIAM, Philadelphia, USA.
  59. GROß, B.P. and SACHS, E.W. 2011. Fast calibration of financial models under SDE constraints using adjoint technique (preprint).
  60. HAGAN, P.S., KUMAR, D., LESNIEWSKI, A.S. and WOODWARD, D.E. 2002. Managing smile risk. WILMOTT, 1: 84-108.
  61. HAMIDA, S.B. and CONT, R. 2005. Recovering volatility from option prices by evolutionary optimization. Journal of Computational Finance, 8(3): 43-76.
  62. HANKE, M. and RÖSLER, E. 2005. Computation of local volatilities from regularized Dupire equations. International Journal of Theoretical and Applied Finance, 8(2): 207-221.
  63. HE, C., KENNEDY, J.S., COLEMAN, T.F., FORSYTH, P.A., LI, Y. and VETZAL, K.R. 2006. Calibration and hedging under jump diffusion. Review of Derivatives Research, 9(1): 1-35.
  64. HEIN, T. and HOFMANN, B. 2003. On the nature of ill-posedness of an inverse problem arising in option pricing. Inverse Problems, 19: 1319-1338.
  65. HENRY-LABORDÈRE, P. 2009. Calibration of local stochastic volatility models to market smiles: A Monte-Carlo approach. RISK, Sep. 2009: 112-117.
  66. HESTON, S.L. 1993. A closed-form solution for options with stochastic volatility, with application to bond and currency options. Reviews of Financial Studies, 6(2): 327-343.
  67. HULL, J.C. 2011. Options, Futures and Other Derivatives. 8th edn. Prentice-Hall, Englewood Cliffs, New Jersey, USA.
  68. INGERSOLL, J.E. 1997. Valuing foreign exchange rate derivatives with a bounded exchange process. Review of Derivatives Research, 1(2): 159-181.
  69. JACKSON, N., SÜLI, E. and HOWISON, S. 1999. Computation of deterministic volatility surfaces. Journal of Computational Finance, 2(2): 5-32.
  70. JACKWERTH, J.C. 1997. Generalized Binomial trees. Journal of Derivatives, 5(2): 7-17.
  71. JIANG, L. and TAO, Y. 2001. Identifying the volatility of the underlying assets from option prices. Inverse Problems, 17(1): 137-155.
  72. JIANG, L., CHEN, Q., WANG, L. and ZHANG, J.E. 2003. A new well-posed algorithm to recover implied local volatility. Quantitative Finance, 3(6): 451-457.
  73. KÄBE, C. 2010. Feasibility and Efficiency of Monte Carlo Based Calibration of Financial Market Models. Ph.D. thesis, University of Trier, Trier, Germany.
  74. KAEBE, C., MARUHN, J.H. and SACHS, E.W. 2009a. Adjoint-based Monte Carlo calibration of financial market models. Finance and Stochastics, 13(3): 351-379.
  75. KAEBE, C., MARUHN, J.H. and SACHS, E.W. 2009b. Speeding up Monte Carlo calibrations of jump diffusion models with adjoint calculus (submitted).
  76. KAHALÉ, N. 2004. An arbitrage-free interpolation of volatilities. RISK, 17(5): 102-106.
  77. KARATZAS, I. and SHREVE, S.E. 1998. Methods of Mathematical Finance. 1st edition. Springer-Verlag, New York, USA.
  78. KARATZAS, I. and SHREVE, S.E. 2008. Brownian Motion and Stochastic Calculus. 2nd edition. Springer-Verlag, New York, USA.
  79. KELLEY, C.T. and SACHS, E.W. 1994. Multilevel algorithms for constrained compact fixed point problems. SIAM Journal on Scientific Computing, 15(3): 645-667.
  80. KLOEDEN, P.E. and PLATEN, E. 1999. Numerical Solution of Stochastic Differential Equations. 1st edn. Springer-Verlag, Berlin, Germany.
  81. KOLB, R.W. and OVERDAHL, J.A. 2010. Financial Derivatives: Pricing and Risk Management. John Wiley & Sons, Hoboken, New Jersey, USA.
  82. KOU, S.G. 2002. A jump-diffusion model for option pricing. Management Science, 48(8): 1086-1101.
  83. LAGNADO, R. and OSHER, S. 1997a. Reconciling differences. RISK, 10(4): 79-83.
  84. LAGNADO, R. and OSHER, S. 1997b. A technique for calibration derivative security pricing models: Numerical solution of the inverse problem. Journal of Computational Finance, 1(1): 13-25.
  85. LIPTON, A. 2001. Mathematical Methods For Foreign Exchange: A Financial Engineer's Approach. World Scientific, Singapore.
  86. LIPTON, A. 2002. The vol smile problem. RISK, 15(2): 61-65.
  87. LIPTON, A. and MCGHEE, W. 2002. Universal barriers. RISK, 15(5): 81-85.
  88. LOERX, A. 2011. Adjoint Based Calibration of Local Volatility Models. Ph.D. Thesis, University of Trier, Trier, Germany.
  89. LOERX, A., MARUHN, J.H. and SACHS, E.W. 2010. The Role of Adjoints in the Calibration of Local olatility Models (submitted).
  90. LOERX, A., SCHULZE, M. and SACHS, E.W. 2011. The calibration of local volatility models using an inexact Gauss-Newton approach (forthcoming).
  91. MCINTYRE, M.L. 2001. Performance of Dupire's implied diffusion approach under sparse and incomplete data. Journal of Computational Finance, 4(4): 33-84.
  92. MERTON, R.C. 1973. Theory of rational option pricing. The Bell Journal of Economics and Management Science, 4(1): 141-183.
  93. NOCEDAL, J. and WRIGHT, S.J. 1999. Numerical Optimization. 2nd Edition. Springer-Verlag, New York, USA.
  94. OROSI, G. 2010. Improved implementation of local volatility and its application to S&P 500 index options. Journal of Derivatives, 17(3): 53-64.
  95. PIRONNEAU, O. 2006. Calibration of barrier options. In: Fitzgibbon, W.E., Hoppe, R., Periaux, J., PIRONNEAU, O. and VASSILEVSKI, Yu. (eds), Advances in Numerical Mathematics: Proc. Int. Conf. 60th jubilee Y. Kuznetsov. Institute of Numerical Mathematics RAS.
  96. PIRONNEAU, O. 2007. Dupire-like identities for complex options. Comptes Rendus Mathematique, 344(2): 127-133.
  97. PIRONNEAU, O. 2009. Calibration of options on a reduced basis. Journal of Computational and Applied Mathematics, 232(1): 139-147.
  98. PITERBARG, V. 2007. Markovian projection for volatility calibration. RISK, 20(4): 84-89.
  99. RADY, S. 1997. Option pricing in the presence of natural boundaries and a quadratic diffusion term. Finance and Stochastics, 1(4): 331-344.
  100. REN, Y., MADAN, D. and QIAN, M. 2007. Calibrating and pricing with embedded local volatility models. RISK, 20(9): 138-143.
  101. RUBINSTEIN, M. 1994. Implied Binomial trees. Journal of Finance, 49(3): 771-818.
  102. SACHS, E.W. and SCHU, M. 2008. Reduced order models (POD) for calibration problems in finance. Pages 735-742 of: Kunisch, Karl, Of, Günter and Steinbach, Olaf (eds), Numerical Mathematics and Advanced Applications, ENUMATH 2007.
  103. SACHS, E.W. and SCHU, M. 2010. Reduced order models in PIDE constrained optimization. Control and Cybernetics, 39(3): 661-675.
  104. SACHS, E.W. and STRAUSS, A.K. 2008. Efficient solution of a partial integro-differential equation in finance. Applied Numerical Mathematics, 58(11): 1687-1703.
  105. SAMPERI, D. 2002. Calibrating a diffusion pricing model with uncertain volatility: Regularization and stability. Mathematical Finance, 12(1): 71-87.
  106. SCHULZE, M. 2002. Parameter Identification for Underdetermined Systems Arising in Option Pricing Models and Neural Networks. Ph.D. thesis, University of Trier, Trier, Germany.
  107. STEIN, E.M. and STEIN, J.C. 1991. Stock price distributions with stochastic volatility: An analytic approach. The Review of Financial Studies, 4(4): 727-752.
  108. TAVELLA, D. and RANDALL, C. 2000. Pricing Financial Instruments: The Finite Difference Method. (1st Edition) John Wiley & Sons, New York, USA.
  109. TAVELLA, D., GIESE, A. and VERMEIREN, D. 2005. Hybrid stochastic volatility calibration. Pages 221-228 of: WILMOTT, P. (ed), The Best of Wilmott 2. John Wiley & Sons, Chichester, UK.
  110. TIKHONOV, M. 1963. Regularization of incorrectly posed problems. Soviet Math. Doklady, 4: 1624-1627.
  111. TOPPER, J. 2005. Financial Engineering with Finite Elements. (1st Ed.) John Wiley & Sons, Chichester, UK.
  112. TURINICI, G. 2008. Local volatility calibration using an adjoint proxy. Review of Economic and Business Studies, 2: 93-106.
  113. TURINICI, G. 2009a. Calibration of local volatility using the local and implied instantaneous variance. Journal of Computational Finance, 13(2): 1-18.
  114. TURINICI, G. 2009b. Control-theoretic framework for a quasi-Newton local volatility surface inversion. Pages 254-257 of: MAROULIS, G. and SIMOS, T.E. (eds), Computational Methods in Science and Engineering: Advances in Computational Science, vol. 1148. American Institute of Physics Conference Series.
  115. WILMOTT, P. 2006. Paul Wilmott on Quantitative Finance. (2nd Edition) John Wiley & Sons, Chichester, UK.
  116. ZÜHLSDORFF, C. 2001. The pricing of derivatives on assets with quadratic volatility. Applied Mathematical Finance, 8(4): 235-262.
  117. ZVAN, R., FORSYTH, P.A. and VETZAL, K.R. 1998. Robust numerical methods for PDE models of Asian options. Journal of Computational Finance, 1(2): 39-78.