Main Article Content

Abstract

The old classical method for preparing inorganic materials is by the ceramic route or solid state reaction. It consists of mixing the starting materials at an elevated temperature. This method has been used for preparing numerous new materials until today. Three decades ago, the materials science community was aware of soft chemistry synthesis or chimie douce, especially with the emergence of nanotechnology field. Instead of the classical method, which involves high temperature, soft chemistry techniques use lower temperatures. In general, starting materials are dissolved in a liquid phase and different parameters such as pH, temperature and reaction time are adjusted in order to obtain the desired product. By using a lower temperature of preparation, the product obtained shows nanosize particles, with sizes lower than 100 nanometers. In contrast, the ceramic route (or solid state reaction) using higher temperatures leads to bigger particles size that are out of the nanosize range. Also, some interesting phases that are not stable at elevated temperatures (named metastable phases) and are not accessible by the classical method, are now prepared by the soft chemistry technique. Usually these metastable phases have interesting structural features and important physical properties. Adding to that, the product is obtained with a higher level of purity.

 

 

Keywords

Solid state reaction soft chemistry metastable phase nanosize materials.

Article Details

References

  1. BRADLEY, D.C., MEHROTRA, R.C., GAUR, D.P. 1978. metal Alkoxides, Academic Press, London.
  2. CHANG, Y.S., CHANG, Y.H., CHEN, I.G., CHEN, G.J., CHAI, Y.L., FANG, T.H., Wu, S. 2004. Synthesis, formation and characterization of ZnTiO3 ceramics. Ceram. International, 30: 2183-2189.
  3. CHEN, X.M., WANG, T., LI, J. 2004. Dielectric characteristics and their field dependence of (Ba, Ca)TiO3 ceramics. Mater. Sci. Eng. B, 113: 117-120.
  4. CHENG, Z-X., DONG, X-B., PAN, Q-Y., ZHANG, J-C., DONG, X-W. 2006. Preparation and characterization of In2O3 nanorods. Mater. Lett., 60: 3137-3140.
  5. COOWAR, F., TARASCON, J.M., MCKINNON, W.R., GUYOMARD, D. 1994. Lithium deintercalation in the spinel LiMn2O4. Mater. Sci. Forum.152-153: 213-216.
  6. ELDER, D., MOTTA, M.S., KINLOCH, I.A., WINDLE, A.H. 2006. Anatase nanotubes as support for platinu nanocrystals Physica E. in press.
  7. FIGLARZ, M. 1994. Soft Chemistry: Thermodynamic and structural aspects. Mater. Sci. Forum. 152-153: 55-68.
  8. HEIRAS, J., PICHARDO, E., MAHMOUD, A., LOPEZ, T., PEREZ-SALAS, R., SIQUEIROS, J.M., BLANCO, M., CASTELLANOS, M. 2002. Thermochromism in (Ba, Sr)-Mn oxides, J. Phys. Chem. Solids. 63: 591-595.
  9. HOYOS, D., PAILLAUD, J.-L., IMON-MASSERON, A., GUTH, J.-L. 2005. Synthesis, characterization and structure determination of a three-dimensional hydrated potassium zinc divanadate: K[Zn2.5V 2O7(OH)2]·H2O. Solid State Sci., 7(5): 616-621.
  10. LIVAGE, J. 1977. Le Monde, October 26th, France.
  11. LIVAGE, J. 2001. Chimie douce: from shake-and-bake processing to wet chemistry New J. Chem., 25:1.
  12. LIVAGE, J. 1994. The Sol-Gel route to advanced materials. Mater. Sci. Forum 152-153: 43-54.
  13. MELGHIT, K., AL-BELUSHI, A.K., AL-AMRI, I. 2007. Short reaction time preparation of zinc pyrovanadate at normal pressure. Ceram. International, 33: 285-288.
  14. MELGHIT, K. 1994. Thesis. Universite of picardie France.
  15. MELGHIT, K., AL-MUNGI, A.S. 2006. New form of iron orthovanadate FeVO4.1.5 H2O prepared at normal pressure and low temperature. Mater. Sci. Eng. B. 136: 177-181
  16. MELGHIT, K., AL-RABANIAH, S.S. 2006. Photodegradation of Congo red under sunlight catalysed by nanorod rutile TiO2. Journal of Photochem. and Photobiol. A: Chem. 184: 331-334.
  17. MELGHIT, K., BELLOUI, B., YAHAYA, A.H. 1999. Room temperature preparation of Zinc Pyrovanadate Zn3 (OH) 2V2O7.2H2O. J. Mater. Chem., 9(7): 1543-1545.
  18. MELGHIT, K., RABANIAH, S., AL-AMERI, I. 2006. Low temperature preparation and characterization of nanospherical anatase TiO2 and its photocatalytic activity on Congo red degradation under sunlight. Ceram. international. Accepted.
  19. OUVRARD, G., PROUZET, E., BREC, R., ROUXEL, J. 1994. Some chalcogenides syntheses via soft chemistry. Mater. Sci. Forum.152-153:143-148.
  20. POEPPELMEIER, K.R., TOMCZAK, D.C. 1994. Soft Chemistry routes to oxides catalysts, Mater. Sci. Forum. 152-153: 163-168.
  21. QIU, S., KALITA, S.J. 2006. Synthesis, processing and characteriasation of nanocrystalline titanium dioxide. Mater. Sci. Eng. A. 435-436: 327-332.
  22. ROUXEL, J. 1988. Chemical reactivity of low-dimensional solids., Chemica Scripta, 61: 33.
  23. SHISHIDO, T., SONG, Z., KADOWAKI, E., WANG, Y., TAKEHIRA, K. 2003. Vapor-phase oxidation of 3-picoline to nicotinic acid over Cr1-xAlxVO4 catalysts Appl. Catal. A: General 239: 287-296.
  24. SOMIYA, S., ROY, R. 2000. Hydrothermal Synthesis of fine oxide powders
  25. Bull. Mater. Sci., 23: 453-460.
  26. SONG, Z., MATSUSHITA, T., SHISHIDO, T., TAKEHIRA, K. 2002. Crystalline CrV0.95P0.05O4 catalyst for vapor-phase oxidation of picolines Chem. Communication, 12: 1306-1307.
  27. SONG, Z., MATSUSHITA, T., SHISHIDO, T., TAKEHIRA, K. 2003.Crystalline CrV1-xPxO4 catalysts for the vapor-phase oxidation of 3-picoline. J. Catal., 218: 32-41.
  28. TOUBOUL, M., MELGHIT, K., BENARD, P. 1994. Synthesis by chimie douce and characterisation of indium vanadates. Eur. J. Solid State Inorg. Chem., 31: 151-161.
  29. TOUBOUL, M., MELGHIT, K. 1995. Synthesis by chimie douce and properties of chromium (III) vanadates (V). J. Mater. Chem., 5(1): 147-150.
  30. TOUBOUL, M., MELGHIT, K., BENARD, P., LOUER, D. 1995 Crystal structure of a metastable form of indium orthovanadate InV O4-I.. J. Solid State. Chem., 118: 9398.
  31. VARMA, S., WANI, B.N., SATHYAMOORTHY, A., GUPTA, N.M. 2004. On the role of lattice distortion in the catalytic properties of substituted orthovanadates La1-xFexVO4. J. Phys. Chem. Solids 65: 1291-1296.
  32. WHITTINGHAM, M.S., LI, J., GUO, J.D., ZAVALIJ, P. 1994. Hydrothermal synthesis of new oxide materials using the tetrametyhyl ammonium. Mater. Sci. Forum. 152-153: 99-108.
  33. WEISS, P.B. 1973. Zeolites-New Horizons in Catalysis., Chemtech, p. 498.
  34. ZHAOXIA, S., KADOWAKI, E., SHISHIDO, T., WANG, Y., TAKEHIRA, K. 2001. 3-picoline oxidation over monoclinic orthovanadate Cr0.5Al0.5VO4 catalysts. Chem. Letters 8: 754-755.
  35. ZAVALIJ, P.Y., ZHANG, F., WHITTINGHAM, M.S. 1997. A new zinc pyrovanadate, Zn3(OH)2V2O7.2H2O, from X-ray powder data. Acta Crystallogr. Sect. C: Cryst. Struct. Communications 53:1738-1739.