Main Article Content

Abstract

Ferrocenylethynyl is a key starting material for the synthesis of fascinating new molecules and novel functional materials. It combines the robust and redox-active ferrocene moiety with the rigid-rod ethynyl unit. The ferrocene center provides chemically and electrochemically switchable material properties whereas the ethynyl backbone facilitates electron delocalization along the molecule, yielding materials with the potential for a wide range of applications from sensors to bio-organometallics and pharmaceuticals, from catalysts to nonlinear optical materials, and from fuel additives to chelating agents. However, lifetime performances and costs still need to be optimized to make ferrocenylethynyl-based materials commercially competitive. Efficient synthetic methods are already in place which could play a key role in the progress of these materials. This review discusses the main approaches adopted in the synthesis of ferrocenylethynyl-based molecules and materials. Representative examples of each method are reported, highlighting its significant achievements together with the open issues and challenges to be faced by future researchers in this area.

 

Keywords

Ferrocene Ethynyls Electrochemistry Synthesis Organometallic

Article Details

References

  1. Shah HH, Al-Balushi RA, Al-Suti MK, Khan MS, Woodall CH, Molloy KC, et al. Long-Range Intramolecular Electronic Communication in Bis(ferrocenylethynyl) Complexes Incorporating Conjugated Heterocyclic Spacers: Synthesis, Crystallography, and Electrochemistry. Inorg. Chem., 2013;52(9):4898-908.
  2. Speck JM, Claus R, Hildebrandt A, Rüffer T, Erasmus E, van As L, et al. Electron Transfer Studies on Ferrocenylthiophenes: Synthesis, Properties, and Electrochemistry. Organomet., 2012;31(17):6373-80.
  3. Boulas PL, Gómez‐Kaifer M, Echegoyen L. Electrochemistry of supramolecular systems. Angew. Chem. Int. Ed., 1998;37(3):216-47.
  4. Westwood J, Coles SJ, Collinson SR, Gasser G, Green SJ, Hursthouse MB, et al. Binding and electrochemical recognition of barbiturate and urea derivatives by a regioisomeric series of hydrogen-bonding ferrocene receptors. Organomet., 2004;23(5):946-51.
  5. Turner A, Karube I, Wilson G. Biosensors: fundamentals and applications. 1987.
  6. Barlow S, Marder SR. Electronic and optical properties of conjugated group 8 metallocene derivatives. Chem. Comm., 2000(17):1555-62.
  7. Yamamoto T, Morikita T, Maruyama T, Kubota K, Katada M. Poly(aryleneethynylene) Type Polymers Containing a Ferrocene Unit in the π-Conjugated Main Chain. Preparation, Optical Properties, Redox Behavior, and Mössbauer Spectroscopic Analysis. Macromolecules 1997;30(18):5390-96.
  8. Wei H, Quan C-Y, Chang C, Zhang X-Z, Zhuo R-X. Preparation of novel ferrocene-based shell cross-linked thermoresponsive hybrid micelles with antitumor efficacy. J. Phys. Chem. B., 2010;114(16):5309-14.
  9. Wu C, Ye H, Bai W, Li Q, Guo D, Lv G, et al. New potential anticancer agent of carborane derivatives: selective cellular interaction and activity of ferrocene-substituted dithio-o-carborane conjugates. Bioconjugate Chem., 2010;22(1):16-25.
  10. Emel'yanov V, Simonenko L, Skvortsov V. Ferrocene—a Nontoxic Antiknock Agent for Automotive Gasolines. Chemistry and Technology of Fuels and Oils 2001;37(4):224-28.
  11. Herrmann WA. Ferrocene as a Gasoline and Fuel Additive. Applied Homogeneous Catalysis with Organometallic Compounds, Second Edition 2002:586-90.
  12. Atkinson RC, Gibson VC, Long NJ. The syntheses and catalytic applications of unsymmetrical ferrocene ligands. Chem. Soc. Rev. 2004;33(5):313-28.
  13. Rulkens R, Lough AJ, Manners I, Lovelace SR, Grant C, Geiger WE. Linear oligo (ferrocenyldimethylsilanes) with between two and nine ferrocene units: Electrochemical and structural models for poly (ferrocenylsilane) high polymers. J. Am. Chem. Soc. 1996;118(50):12683-95.
  14. Gagnon-Thibault É, Cossement D, Guillet-Nicolas R, Masoumifard N, Bénard P, Kleitz F, et al. Nanoporous Ferrocene-Based Cross-Linked Polymers and Their Hydrogen Sorption Properties. Microporous and Mesoporous Materials 2014; 188: 182-189.
  15. Nguyen P, Gómez-Elipe P, Manners I. Organometallic polymers with transition metals in the main chain. Chem. Rev. 1999;99(6):1515-48.
  16. Manners I. Ring-opening polymerization of metallocenophanes: A new route to transition metal-based polymers. Advances in Organometallic Chemistry, Vol 37 1995;37:131-68.
  17. Abd-El-Aziz AS, Todd EK. Organoiron polymers. Coordination Chemistry Reviews 2003;246(1):3-52.
  18. Zhao H-Y, Guo L, Chen S-F, Bian Z-X. Synthesis, electrochemistry and liquid crystal properties of 1, 2, 3-(NH)-triazolylferrocene derivatives. Journal of Molecular Structure 2013;1054:164-69.
  19. Navale DN, Zote SW, Ramana M. Synthesis of ferrocene derivatives exhibiting low-temperature mesomorphism. Liquid Crystals 2013;40(10):1333-38.
  20. Apreutesei D, Lisa G, Scutaru D, Hurduc N. Investigations on thermal stability of some ferrocene liquid crystals bearing azo, ferrocenyl and cholesteryl units. Journal of optoelectronics and advanced materials 2006;8(2):737.
  21. Aly M, Bramley R, Upadhyay J, Wassermann A, Woolliams P. Paramagnetic ferrocene acid adducts. Kinetics of electron transfer to proton acids. Chem. Comm. (London) 1965(17):404-06.
  22. Ilyakina EV, Poddel’sky AI, Fukin GK, Bogomyakov AS, Cherkasov VK, Abakumov GA. Ferrocene-o-Benzosemiquinonato Tin (IV) Electron-Transfer Complexes. Inorg. Chem. 2013;52(9):5284-89.
  23. Van Staveren DR, Metzler-Nolte N. Bioorganometallic chemistry of ferrocene. Chem. Rev. 2004;104(12):5931-86.
  24. Bertogg A, Togni A. A Novel Chiral Ferrocene-Based Amidine/Amidinato Ligand and Its Rhodium Complexes. Organomet. 2005;25(3):622-30.
  25. Gischig S, Togni A. Synthesis and Coordination Chemistry of a New Chiral Tridentate PCP N-Heterocyclic Carbene Ligand Based on a Ferrocene Backbone. Organomet. 2004;23(10):2479-87.
  26. Colacot TJ. A concise update on the applications of chiral ferrocenyl phosphines in homogeneous catalysis leading to organic synthesis. Chem. Rev. 2003;103(8):3101-18.
  27. Barbaro P, Bianchini C, Giambastiani G, Parisel SL. Progress in stereoselective catalysis by metal complexes with chiral ferrocenyl phosphines. Coord. Chem. Rev. 2004;248(21):2131-50.
  28. Elbert J, Gallei M, Rüttiger C, Brunsen A, Didzoleit H, Stühn B, et al. Ferrocene Polymers for Switchable Surface Wettability. Organomet. 2013.
  29. Kadkin ON, Galyametdinov YG. Ferrocene-containing liquid crystals. Russ. Chem. Rev. 2012;81(8):675.
  30. Lavastre O, Plass J, Bachmann P, Guesmi S, Moinet C, Dixneuf PH. Ruthenium or Ferrocenyl Homobimetallic and RuPdRu and FePdFe Heterotrimetallic Complexes Connected by Unsaturated, Carbon-Rich-C⋮ CC6H4C⋮ C-Bridges. Organomet. 1997; 16(2):184-89.
  31. Lin JT, Sun S-S, Wu JJ, Lee L, Lin K-J, Huang YF. Dinuclear metal carbonyls bridged by pyridyl ligands incorporating an alkyne entity. Inorg. Chem. 1995;34(9): 2323-33.
  32. Carollo L, Floris B. Metallation of alkynes: Part 10. Acetoxymercuration of arylferrocenylethynes. J. Organomet. Chem. 1999;583(1):80-85.
  33. Rausch M, Siegel A, Klemann L. A Facile Route to Ferrocenyl-and 2-Thienylarylacetylenes1a. J. Org. Chem. 1966;31(8):2703-04.
  34. Lin JT, Wu JJ, Li C-S, Wen YS, Lin K-J. Conjugated Pyridines with an End-Capping Ferrocene. Organomet. 1996;15(23):5028-34.
  35. Chawdhury N, Long NJ, Mahon MF, Ooi L-l, Raithby PR, Rooke S, et al. Synthesis and characterisation of aromatic ethynyl-bridged ferrocenes. J. Organomet. Chem. 2004; 689(4): 840-47.
  36. Muthiah C, Kumar KP, Mani CA, Kumara Swamy K. Chlorophosphonates: Inexpensive precursors for stereodefined chloro-substituted olefins and unsymmetrical disubstituted acetylenes. J. Org. Chem. 2000;65(12):3733-37.
  37. Torres JC, Pilli RA, Vargas MD, Violante FA, Garden SJ, Pinto AC. Synthesis of 1-ferrocenyl-2-aryl (heteroaryl) acetylenes and 2-ferrocenylindole derivatives via the Sonogashira–Heck–Cassar reaction. Tetrahedron 2002;58(22):4487-92.
  38. Torres JC, Pilli RA, Vargas MD, Violante FA, Garden SJ, Pinto AC. Synthesis of 1-ferrocenyl-2-aryl(heteroaryl)acetylenes and 2-ferrocenylindole derivatives via the Sonogashira–Heck–Cassar reaction. Tetrahedron 2002;58(22):4487-92.
  39. Sun S-S, Tran DT, Odongo OS, Lees AJ. Photophysical and Photochemical Properties of W(0) and Re(I) Carbonyl Complexes Incorporating Ferrocenyl-Substituted Pyridine Ligands. Inorg. Chem. 2001;41(1): 132-35.
  40. Köcher S, Lang H. 4-Ethinyl-benzonitrile-ferrocenes bridged by a Pd(PPh3)2 unit; the solid-state structure of (η5-C5H5)Fe(η5-C5H4C≡CC6H4C≡N-1,4). J. Organomet. Chem. 2001;637–639(0):198-203.
  41. Wong W-Y, Lu G-L, Ng K-F, Choi K-H, Lin Z. Synthesis, structures and properties of platinum (II) complexes of oligothiophene-functionalized ferrocenylacetylene. Journal of the Chemical Society, Dalton Trans. 2001(22):3250-60.
  42. Zhu Y, Wolf MO. Charge Transfer and Delocalization in Conjugated (Ferrocenylethynyl)oligothiophene Complexes. J. Am. Chem. Soc. 2000;122(41):10121-25.
  43. Wong W-Y, Ho K-Y, Ho S-L, Lin Z. Carbon-rich organometallic materials derived from 4-ethynylphenylferrocene. J Organomet Chem. 2003;683(2):341-53.
  44. Hendrickx E, Persoons A, Samson S, Stephenson GR. Nonlinear optical properties in bimetallic monocation π-complexes of iron. J Organomet. Chem. 1997;542(2):295-97.
  45. Hedberg FL, Rosenberg H. Synthesis of 1, 1'-biferrocenylene. J. Am. Chem. Soc. 1969;91(5):1258-59.
  46. Rosenblum M, Brawn NM, Ciappenelli D, Tancrede J. Synthesis of [2.2]ferrocenophane-1,13-diyne. J. Organomet. Chem. 1970;24(2):469-77.
  47. Levanda C, Bechgaard K, Cowan DO. Mixed valence cations. Chemistry of .pi.-bridged analogues of biferrocene and biferrocenylene. Org. Chem. 1976;41(16): 2700-04.
  48. Cowan DO, Levanda C. Organic solid state. X. 1,1'-Biferrocenylene[Fe(II)Fe(III)]salts. J Am. Chem. Soc. 1972;94(26):9271-72.
  49. Ingham SL, Khan MS, Lewis J, Long NJ, Raithby PR. Synthesis and characterisation of monomeric, dimeric and polymeric ferrocenylacetylides. Crystal structure of 1,1′-bis(phenylethynyl)ferrocene. J Organomet. Chem. 1994;470(1–2):153-59.
  50. Plenio H, Hermann J, Sehring A. Optically and Redox-Active Ferroceneacetylene Polymers and Oligomers. Chem. – A Eur. J. 2000;6(10):1820-29.
  51. Lu Q, Yao C, Wang X, Wang F. Enhancing Molecular Conductance of Oligo(p-phenylene ethynylene)s by Incorporating Ferrocene into Their Backbones. J. Phy. Chem. 2012;116(33):17853-61.
  52. Long NJ. Metallocenes: an introduction to sandwich complexes: Blackwell Science Oxford, UK; 1998.
  53. Peris E. From long-chain conjugated oligomers to dendrimers: synthesis and physical properties of phenyl-ethenyl-ferrocenyl containing one-and two-dimensional complexes. Coord. Chem. Rev. 2004;248(3):279-97.
  54. Wong W-Y, Lu G-L, Choi K-H, Guo Y-H. Carbon-rich organometallics: synthesis and characterization of new ferrocenyl end-capped bis(butadiynyl) fluorene derivatives. J. Organomet. Chem. 2005;690(1):177-86.
  55. McGale EM, Robinson BH, Simpson J. Ethynyl and ethenyl ferrocenyl dyads with acridine, acridone, and anthraquinone. Organomet. 2003;22(5):931-39.
  56. Yuan Y-F, Cardinaels T, Lunstroot K, Van Hecke K, Van Meervelt L, Görller-Walrand C, et al. Rare-Earth Complexes of Ferrocene-Containing Ligands: Visible-Light Excitable Luminescent Materials. Inorg. Chem. 2007;46(13):5302-09.
  57. Mercs L, Neels A, Albrecht M. Probing the potential of N-heterocyclic carbenes in molecular electronics: redox-active metal centers interlinked by a rigid ditopic carbene ligand. Dalton Trans. 2008(41):5570-76.
  58. Reddinger JL, Reynolds JR. Macromol. 1997;30:673.
  59. Plenio H, Hermann J, Sehring A. Chem. Eur. J. 2000;6:1820.
  60. Robin MB, Day P. Mixed Valence Chemistry-A Survey and Classification. Adv. Inor. chem. 1968;Volume 10:247-422.
  61. Solntsev PV, Dudkin SV, Sabin JR, Nemykin VN. Electronic Communications in (Z)-Bis(ferrocenyl)ethylenes with Electron-Withdrawing Substituents. Organomet. 2011;30(11):3037-46.
  62. Chen YJ, Pan DS, Chiu CF, Su JX, Lin SJ, Kwan KS. Metal−Metal Interactions in Weakly Coupled Mixed-Valence E- and Z-Diferrocenylethylene Complexes. Inorg. Chem. 2000;39:953.
  63. Chung M-C, Gu X, Etzenhouser BA, Spuches AM, Rye PT, Seetharaman SK, et al. Intermetal Coupling in [(η5-C5R5)Fe(dppe)]2(μ-CHCHCHCH) and in Their Dicationic and Monocationic Mixed-Valence Forms. Organomet. 2003;22(17): 3485-94.
  64. Patoux C, Coudret C, Launay J-P, Joachim C, Gourdon A. Topological Effects on Intramolecular Electron Transfer via Quantum Interference. Inorg. Chem. 1997; 36(22):5037-49.
  65. Levanda C, Bechgaard K, Cowan DO. J. Org. Chem. 1976;41:2700.
  66. Xu G-L, Xi B, Updegraff JB, Protasiewicz JD, Ren T. 1,6-Bis(ferrocenyl)-1,3,5-hexatriyne: Novel Preparation and Structural Study. Organomet. 2006;25(22):5213-15.
  67. Ribou A-C, Launay J-P, Sachtleben ML, Li H, Spangler CW. Intervalence electron transfer in mixed valence diferrocenylpolyenes. Decay law of the metal-metal coupling with distance. Inorg. Chem. 1996;35(13):3735-40.
  68. Gautam P, Dhokale B, Mobin SM, Misra R. Ferrocenyl BODIPYs: synthesis, structure and properties. RSC. Adv. 2012;2(32): 12105-07.
  69. Fink H, Long NJ, Martin AJ, Opromolla G, White AJP, Williams DJ, et al. Ethynylferrocene compounds of 1, 3, 5-tribromobenzene. Organomet. 1997;16: 2646.
  70. Diallo AK, Daran J-C, Varret F, Ruiz J, Astruc D. How Do Redox Groups Behave around a Rigid Molecular Platform? Hexa(ferrocenylethynyl)benzenes and Their “Electrostatic” Redox Chemistry. Angew. Chem. Int. Ed. 2009;48(17):3141-45.
  71. Diallo AK, Daran J-C, Varret F, Ruiz J, Astruc D. How Do Redox Groups Behave around a Rigid Molecular Platform? Hexa(ferrocenylethynyl)benzenes and Their “Electrostatic” Redox Chemistry. Angew. Chem., Int. Ed. 2009;48(17):3141-45.
  72. Jiao J, Long GJ, Rebbouh L, Grandjean F, Beatty AM, Fehlner TP. Properties of a Mixed-Valence (FeII)2(FeIII)2 Square Cell for Utilization in the Quantum Cellular Automata Paradigm for Molecular Electronics. J. Am. Chem. Soc. 2005;127(50):17819-31.
  73. Tanabe M, Horie M, Osakada K. Preparation, structures, and electrochemical properties of silaplatinacyclohexadienes with ferrocenyl pendant groups. Organomet. 2003;22(2):373-76.
  74. Wong W-Y, Ho K-Y, Choi K-H. New ferrocenyl heterometallic complexes of 2,7-diethynylfluoren-9-one. J. Organomet. Chem. 2003;670(1–2):17-26.
  75. Siemeling U, Vor der Brüggen J, Vorfeld U, Neumann B, Stammler A, Stammler HG, et al. Ferrocenyl‐Functionalised Terpyridines and Their Transition‐Metal Complexes: Syntheses, Structures and Spectroscopic and Electrochemical Properties. Chem.-A Eur. J. 2003;9(12):2819-33.
  76. Zhu Y, Clot O, Wolf MO, Yap GPA. Effect of Ancillary Ligands on Ru(II) on Electronic Delocalization in Ruthenium(II) Bisferrocenylacetylide Complexes. J. Am. Chem. Soc. 1998;120:1812.
  77. Tárraga A, Molina P, Curiel D, Velasco MD. Homotrimetallic oxazolo-ferrocene complexes displaying tunable cooperative interactions between metal centers and redox-switchable character. Organomet. 2001;20(11):2145-52.
  78. Bucher C, Moutet J-C, Pécaut J, Royal G, Saint-Aman E, Thomas F, et al. Thermically and Electrochemically Induced Isomerization of a (Bis (ferrocene)-cyclam) copper (II) Complex. Inorg. Chem. 2003;42(7):2242-52.
  79. Zanello P, Togni A, Hayashi T. Ferrocenes: Homogeneous Catalysis. Org. Synth., Mat. Science 1995:317-430.
  80. Champeil E, Draper SM. Ferrocenylalkynes as ligands in transition metal complexes. Journal of the Chemical Society, Dalton Trans. 2001(9):1440-47.
  81. Yip JH, Wu J, Wong K-Y, Ho KP, So-Ngan Pun C, Vittal JJ. Electronic Communication Mediated by a PtI-PtI σ-Bond. Organomet. 2002;21(24):5292-300.
  82. Albinati A, Fabrizi de Biani F, Leoni P, Marchetti L, Pasquali M, Rizzato S, et al. Redox Control of Light-Induced Platinum-Cluster-to-Iron Charge Transfer in a Bis(ferrocenylethynyl)-Substituted Hexa-nuclear Platinum Derivative. Angew. Chem. Int. Ed. 2005;44(35):5701-05.
  83. Xu G-L, DeRosa MC, Crutchley RJ, Ren T. trans-Bis(alkynyl) Diruthenium(III) Tetra(amidinate): An Effective Facilitator of Electronic Delocalization. J. Am. Chem. Soc. 2004;126(12):3728-29.
  84. Xu G-L, Crutchley RJ, DeRosa MC, Pan Q-J, Zhang H-X, Wang X, et al. Strong Electronic Couplings between Ferrocenyl Centers Mediated by Bis-Ethynyl/Butadiynyl Diruthenium Bridges. J. Am. Chem. Soc. 2005;127(38):13354-63.
  85. Xu G-L, Jablonski CG, Ren T. Further studies of tetrakis(N,N′-dialkylbenzamidinato)diruthenium(III) chloro and alkynyl compounds: molecular engineering of metallayne monomers. J. Organomet. Chem. 2003;683(2):388-97.
  86. Jiao J, Long GJ, Grandjean F, Beatty AM, Fehlner TP. Building Blocks for the Molecular Expression of Quantum Cellular Automata. Isolation and Characterization of a Covalently Bonded Square Array of Two Ferrocenium and Two Ferrocene Complexes. J. Am. Chem. Soc. 2003;125(25):7522-23.
  87. Givaja G, Amo-Ochoa P, Gomez-Garcia CJ, Zamora F. Electrical conductive coordination polymers. Chem. Soc. Rev. 2012;41(1):115-47.
  88. Tanaka D, Nakagawa K, Higuchi M, Horike S, Kubota Y, Kobayashi TC, et al. Kinetic Gate-Opening Process in a Flexible Porous Coordination Polymer. Angew. Chem. Int. Ed. 2008;47(21):3914-18.
  89. Ariga K, Ito H, Hill JP, Tsukube H. Molecular recognition: from solution science to nano/materials technology. Chem. Soc. Rev. 2012;41(17):5800-35.
  90. Welte L, Calzolari A, Di Felice R, Zamora F, Gomez-Herrero J. Highly conductive self-assembled nanoribbons of coordination polymers. Nat Nano 2010;5(2):110-15.
  91. Schenning APHJ, Meijer EW. Supramolecular electronics; nanowires from self-assembled [small pi]-conjugated systems. Chem. Comm. 2005;0(26):3245-58.
  92. Kang J, Nelson JA, Lu M, Xie B, Peng Z, Powell DR. Charge-transfer hybrids containing covalently bonded polyoxometalates and ferrocenyl units. Inorg. Chem. 2004;43(20):6408-13.
  93. Lewis JEM, John McAdam C, Gardiner MG, Crowley JD. A facile "click" approach to functionalised metallosupramolecular architectures. Chem. Comm. 2013;49(33):3398-400.
  94. Rupar PA, Chabanne L, Winnik MA, Manners I. Non-Centrosymmetric Cylindrical Micelles by Unidirectional Growth. Science 2012;337(6094):559-62.
  95. Ward MD, Raithby PR. Functional behaviour from controlled self-assembly: challenges and prospects. Chem. Soc. Rev. 2013;42(4):1619-36.
  96. Diallo AK, Absalon C, Ruiz J, Astruc D. J. Ferrocenyl-Terminated Redox Stars: Synth- esis and Electrostatic Effects in Mixed -Valence Stabilization. J. Am. Chem. Soc. 2011;133:629.
  97. Wu S-H, Shen J-J, Yao J, Zhong Y-W. Asymmetric Mixed-Valence Complexes that Consist of Cyclometalated Ruthenium and Ferrocene: Synthesis, Characterization, and Electronic-Coupling Studies. Chemistry – An Asian J. 2013;8(1):138-47.
  98. Hsu S-H, Reinhoudt DN, Huskens J, Velders AH. Lateral interactions at functional monolayers. J Mat. Chem. 2011;21(8): 2428-44.
  99. Eyley S, Shariki S, Dale SE, Bending S, Marken F, Thielemans W. Ferrocene-decorated nanocrystalline cellulose with charge carrier mobility. Langmuir 2012;28(16):6514-19.
  100. Fabre B. Ferrocene-terminated monolayers covalently bound to hydrogen-terminated silicon surfaces. Toward the development of charge storage and communication devices. Acc. Chem. Res. 2010;43:1509.
  101. Horikoshi R, Nambu C, Mochida T. Metal-Centered Ferrocene Clusters from 5-Ferrocenylpyrimidine and Ferrocenyl- pyrazine. Inorg. Chem. 2003;42(21):6868-75.
  102. Wei K-J, Ni J, Liu Y. Heterobimetallic Metal-Complex Assemblies Constructed from the Flexible Arm-Like Ligand 1,1′-Bis[(3-pyridylamino)carbonyl]ferrocene: Structural Versatility in the Solid State. Inorg. Chem. 2010;49(4):1834-48.
  103. Wu G, Wang X-F, Okamura T-a, Sun W-Y, Ueyama N. Syntheses, Structures, and Photoluminescence Properties of Metal(II) Halide Complexes with Pyridine-Containing Flexible Tripodal Ligands. Inorg. Chem. 2006;45(21):8523-32.
  104. Zangrando E, Casanova M, Alessio E. Trinuclear Metallacycles: Metallatriangles and Much More. Chem. Rev. 2008;108(12):4979-5013.
  105. Hess CR, Weyhermüller T, Bill E, Wieghardt K. [{Fe(tim)}2]: An Fe-Fe Dimer Containing an Unsupported Metal–Metal Bond and Redox-Active N4 Macrocyclic Ligands. Angew. Chem. Int. Ed. 2009;48(20):3703-06.
  106. Kumar A, Sun S-S, Lees AJ. Directed assembly metallocyclic supramolecular systems for molecular recognition and chemical sensing. Coord. Chem. Rev. 2008;252(8–9):922-39.
  107. Sadakiyo M, Yamada T, Kitagawa H. Rational Designs for Highly Proton-Conductive Metal− Organic Frameworks. J. Am. Chem. Soc. 2009;131(29):9906-07.
  108. Yamada T, Kitagawa H. Protection and Deprotection Approach for the Introduction of Functional Groups into Metal−Organic Frameworks. J. Am. Chem. Soc. 2009;131(18):6312-13.
  109. Angamuthu R, Byers P, Lutz M, Spek AL, Bouwman E. Electrocatalytic CO2 Conversion to Oxalate by a Copper Complex. Science 2010;327(5963):313-15.
  110. Perruchas S, Desboeufs N, Maron S, Le Goff XF, Fargues A, Garcia A, et al. Siloxanol-Functionalized Copper Iodide Cluster as a Thermochromic Luminescent Building Block. Inorg. Chem. 2011;51(2):794-98.
  111. Perruchas S, Goff XFL, Maron S, Maurin I, Guillen F, Garcia A, et al. Mechanochromic and Thermochromic Luminescence of a Copper Iodide Cluster. J. Am. Chem. Soc. 2010;132(32):10967-69.
  112. Safko JP, Kuperstock JE, McCullough SM, Noviello AM, Li X, Killarney JP, et al. Network formation and photoluminescence in copper(i) halide complexes with substituted piperazine ligands. Dalton Trans. 2012;41(38):11663-74.
  113. Igawa S, Hashimoto M, Kawata I, Yashima M, Hoshino M, Osawa M. Highly efficient green organic light-emitting diodes containing luminescent tetrahedral copper(i) complexes. J. Mat. Chem. C 2013;1(3):542-51.
  114. Braga D, Grepioni F, Maini L, Mazzeo PP, Ventura B. Solid-state reactivity of copper(i) iodide: luminescent 2D-coordination polymers of CuI with saturated bidentate nitrogen bases. New Journal of Chemistry 2011;35(2):339-44.
  115. Pike RD, Reinecke BA, Dellinger ME, Wiles AB, Harper JD, Cole JR, et al. Bicyclic Phosphite Esters from Pentaerythritol and Dipentaerythritol: New Bridging Ligands in Organometallic and Inorganic Chemistry. Organomet. 2004;23(9):1986-90.
  116. Kim TH, Shin YW, Lee SS, Kim J. Supramolecular assembly of one-dimensional channels and two-dimensional brick-wall networks from asymmetric dithioether ligands and copper(I) iodide. Inorg. Chem. Comm. 2007;10(1):11-14.
  117. Kim TH, Shin YW, Jung JH, Kim JS, Kim J. Crystal-to-Crystal Transformation between Three CuI Coordination Polymers and Structural Evidence for Luminescence Thermochromism. Angew. Chem. Int. Ed 2008;47(4):685-88.
  118. Perruchas S, Tard C, Le Goff XF, Fargues A, Garcia A, Kahlal S, et al. Thermochromic Luminescence of Copper Iodide Clusters: The Case of Phosphine Ligands. Inorg. Chem. 2011;50(21):10682-92.
  119. Jess I, Näther C. Investigations on the Synthesis, Structures, and Properties of New Copper(I) 2,3-Dimethylpyrazine Coordination Compounds. Inorg. Chem. 2006;45(18):7446-54.
  120. Näther C, Jess I. Synthesis, Crystal Structures, and Thermal and Thermodynamic Properties of Dimorphic Copper(I) Coordination Polymers. Inorg. Chem. 2003;42(9):2968-76.
  121. Graham PM, Pike RD, Sabat M, Bailey RD, Pennington WT. Coordination Polymers of Copper(I) Halides. Inorg. Chem. 2000;39(22):5121-32.
  122. Näther C, Jeß I. Synthesis, crystal structures and thermal properties of new copper(I)halide 2-ethylpyrazine coordination polymers: the influence of solid-state kinetics on product formation. J. Solid State Chemistry 2002;169(1):103-12.
  123. Kyle KR, Ryu CK, Ford PC, DiBenedetto JA. Photophysical studies in solution of the tetranuclear copper(I) clusters Cu4I4L4 (L = pyridine or substituted pyridine). J. Am. Chem. Soc. 1991;113(8):2954-65.
  124. Kyle KR, Ford PC. Dynamic quenching of the metal-to-ligand charge-transfer excited state of Cu4I4(pyridine)4. Exciplex formation and self-quenching. J. Am. Chem. Soc. 1989;111(13):5005-06.
  125. Rath NP, Maxwell JL, Holt EM. Fluorescent copper(I) complexes: an X-ray diffraction study of complexes of copper(I) iodide and pyridine derivatives of rhombic, [Cu2I2(3Me-py)4], and polymeric structure, [{Cul(2me-py)}∞] and [{Cul(2,4Me2-py)}∞]. J. Chem. Soc., Dalton Trans. 1986(11):2449-53.
  126. Raston CL, White AH. Crystal structure of the copper(I) iodide-pyridine (1/1 ) tetramer. J. Am. Chem. Soc., Dalton Trans. 1976(21):2153-56.
  127. Ghosh K, Hu J, White HS, Stang PJ. Construction of Multifunctional Cuboctahedra via Coordination-Driven Self-Assembly. J. Am. Chem. Soc. 2009;131(19):6695-97.
  128. Lent CS, Tougaw PD, Porod W, Bernstein GH. Quantum cellular automata. Nanotech. 1993;4(1):49.
  129. Shah HH, Al-Balushi RA, Al-Suti MK, Khan MS, Woodall CH, Sudlow AL, et al. New Multi-Ferrocenyl- and Multi-Ferricenyl- Materials via Coordination-Driven Self-Assembly and via Charge-Driven Electro-Crystallization. Inorg. Chem. 2013;52(20):12012-22.
  130. Hakikulla H. Shah RAA-B, Mohammed K. Al-Suti, Muhammad S. Khan, Frank Marken, Anna L. Sudlow, Gabriele Kociok-Köhn, Christopher H. Woodall, Paul R. Raithby, Kieran C. Molloy. Electrodeposition Synthesis of Dicationic Di-Ferricenyl-Ethynylpyridinyl Triphenylphosphine Copper Halide Complexes: From Coordination Driven Self-Assembly to New electrocrystallized Materials, Dalton Trans, 2014, DOI: 10.1039/c3dt52914b.
  131. Qiu R, Zhang XL, Qiao R, Li Y, Kim YI, Kang YS. CuNi Dendritic Material: Synthesis, Mechanism Discussion, and Application as Glucose Sensor. Chem. of Mat. 2007;19(17):4174-80.
  132. Shin HC, Liu M. Three-Dimensional Porous Copper–Tin Alloy Electrodes for Rechargeable Lithium Batteries. Adv. Funct. Mat. 2005;15(4):582-86.
  133. Siegfried MJ, Choi K-S. Elucidation of an Overpotential-Limited Branching Phenomenon Observed During the Electrocrystallization of Cuprous Oxide. Angew. Chem. Int. Ed. 2008;47(2):368-72.
  134. Choo H, He B, Liew KY, Liu H, Li J. Morphology and control of Pd nanoparticles. J. Molecular Cata. A: Chem. 2006;244(1–2):217-28.
  135. Noorduin WL, Grinthal A, Mahadevan L, Aizenberg J. Rationally Designed Complex, Hierarchical Microarchitectures. Science 2013;340(6134):832-37.
  136. Polyakov AO, Arkenbout AH, Baas J, Blake GR, Meetsma A, Caretta A, et al. Coexisting Ferromagnetic and Ferroelectric Order in a CuCl4-based Organic–Inorganic Hybrid. Chem. of Mat. 2011;24(1):133-39.
  137. Tayi AS, Shveyd AK, Sue ACH, Szarko JM, Rolczynski BS, Cao D, et al. Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes. Nature 2012;488(7412):485-89.
  138. Pardo E, Train C, Liu H, Chamoreau L-M, Dkhil B, Boubekeur K, et al. Multiferroics by Rational Design: Implementing Ferroelectricity in Molecule-Based Magnets. Angew. Chem. Int. Ed. 2012;51(33):8356-60.
  139. Gao M, Lu C, Jean-Ruel H, Liu LC, Marx A, Onda K, et al. Mapping molecular motions leading to charge delocalization with ultrabright electrons. Nature 2013;496(7445):343-46.
  140. Jerome D. The Physics of Organic Superconductors. Science 1991;252(5012):1509-14.
  141. Horiuchi S, Tokunaga Y, Giovannetti G, Picozzi S, Itoh H, Shimano R, et al. Above-room-temperature ferroelectricity in a single-component molecular crystal. Nature 2010;463(7282):789-92.