Main Article Content

Abstract

Hierarchical ZnO crystals with flower-like microstructures were successfully synthesized via a facile hydrothermal route without using any surfactants. The morphology of these microstructures can be easily controlled by adjusting the pH of the reaction solution. The products were characterized by X-ray powder diffraction (XRD) and scanning electron microscope (SEM). Furthermore, a possible growth mechanism of ZnO hierarchical microstructures was proposed.

 

 

Keywords

Zinc oxide Hierarchical microstructures Hydrothermal synthesis Free-surfactant.

Article Details

References

  1. Qi, K.Z., Yang, J.Q., Fu, J.Q., Wang, G.C., Zhu, L.J. and Zheng, W.J. Morphology-controllable ZnO rings: ionic liquid-assisted hydrothermal synthesis, growth mechanism and photoluminescence properties. Cryst. Eng. Comm., 2013,15, 6729-6735.
  2. Jung, S., Cho, W., Lee, H.J. and Oh, M. Self-template-directed formation of coordination-polymer hexagonal tubes and rings, and their calcination to ZnO rings. Angew. Chem. Int. Ed., 2009, 48, 1459-1462.
  3. Zhang, J., Sun, L., Yin, J., Su, H., Liao, C. and Yan, C. Control of ZnO morphology via a simple solution route. Chem. Mater., 2002, 14, 4172-4177.
  4. Gao, P.X. and Wang, Z.L. Mesoporous polyhedral cages and shells formed by textured self-assembly of ZnO nanocrystals. J. Am. Chem. Soc., 2003, 125, 11299-11305.
  5. Wang, X.D., Summers, C.J. and Wang, Z.L. Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett., 2004, 4, 423-426.
  6. Lao, J.Y., Wen, J.G. and Ren, Z.F. Hierarchical ZnO nanostructures. Nano Lett., 2002, 2, 1287-1291.
  7. Kurtz, M., Strunk, J., Hinrichsen, O., Muhler, M., Fink, K., Meyer, B. and Wöll, C. Active sites on oxide surfaces: ZnO-catalyzed synthesis of methanol from CO and H2. Angew. Chem., Int. Ed., 2005, 44, 2790-2794.
  8. Ko, S.H.,Lee, D.,Kang, H.W., Nam, K.H.,Yeo, J.Y.,Hong, S.J.,Grigoropoulos, C.P. and Sung, H.J. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano Lett., 2011, 11, 666-671.
  9. Arya, S.K.,Saha, S.,Ramirez-Vick, J.E., Gupta, V., Bhansali, S. and Singh, S.P. Recent advances in ZnO nanostructures and thin films for biosensor applications: review. Anal. Chim. Acta., 2012, 737, 1-21.
  10. Zhai, T., Li, L., Ma, Y., Liao, M.,Wang, X., Fang, X.,Yao, J., Bando, Y. and Golberg, D. One-dimensional inorganic nanostructures: synthesis, field-emission and photodetection. Chem. Soc. Rev., 2011, 40, 2986-3004.
  11. Peng, Y., Xu, A.W., Deng, B., Antonietti, M. and Cölfen, H. Polymer-controlled crystallization of Zinc oxide hexagonal nanorings and disks. J. Phys. Chem. B., 2006, 110, 2988-2993.
  12. Boal, A.K., Ilhan, F., DeRouchey, J.E., Thurn-Albrecht, T., Russell, T.P. and Rotello, V.M. Self-assembly of nanoparticles into giant spherical arrays. Nat., 2000, 404, 746-749.
  13. Shi, R.X.,Yang, P.,Wang, J.R., Zhang, A.Y., Zhu, Y.N., Cao, Y.Q. and Ma, Q. Growth of flower-like ZnO via surfactant-free hydrothermal synthesis on ITO substrate at low temperature. Cryst. Eng. Comm., 2012, 14, 5996-6003.
  14. Wen, M.W.,Yang, B.F.,Yan, H.W., Fu, Z.P., Cai, C., Liu, K.P., Chen, Y.J., Xu, J., Fu, S.Q. and Zhang, S.Y. Morphology-controlled synthesis of flowerlike ZnO nano/microstructures and their photocatalytic property. J Nanosci. Nanotechnol., 2009, 9, 2038-2044.
  15. Cauda, V., Pugliese, D., Garino, N., Sacco, A., Bianco, S., Bella, F., Lamberti, A. and Gerbaldi, C. Multi-functional energy conversion and storage electrodes using flower-like Zinc oxide nanostructures. Energy, 2014, 65, 639-646.