Main Article Content

Abstract

Flower-like In2S3 hierarchical nanostructures were successfully prepared via a facile solution-phase route, using thiacetamide as both sulfur source and capping agent. Our experimental results demonstrated that the morphology of these In2S3 nanostructures can be easily modified by changing the ratio of In(NO3)3/thiacetamide. With the ratio increasing from 1:1.5 to 1:6, the In2S3 crystals exhibited flower-like morphology of varying size. XRD and HRTEM of the flowers revealed the cubic structure of In2S3; morphological studies examined by SEM and TEM showed that the synthesized In2S3 nanostructure was a flower-like hierarchitecture assembled from nanoscale flakes. XPS and EDX analysis confirmed the stoichiometry of In2S3 nanoflowers. The optical properties were investigated by UV-vis DRS, which indicated that the In2S3 nanoflower samples possess a band gap from 1.90 to 1.97 eV. Furthermore, photocatalytic activity studies revealed that the prepared In2S3 nanoflowers exhibit an excellent photocatalytic performance, degrading rapidly the aqueous methylene blue dye solution under visible light irradiation. These results suggest that In2S3 nanoflowers will be a promising candidate for a photocatalyst working under the visible light range.

 

 

Keywords

In2S3 nanoflowers Solution-phase synthesis Capping agent Photocatalyst.

Article Details

References

  1. Li, J. and Wang, L.W., Shape effects on electronic states of nanocrystals. Nano Lett., 2003, 3, 1357-1363.
  2. Qi, K.Z., Yang, J.Q., Fu, J.Q., Wang, G.H., Zhu, L.J. and Zheng, W.J., Morphology-controllable ZnO rings: ionic liquid-assisted hydrothermal synthesis, growth mechanism and photoluminescence properties. Cryst. En.g Comm., 2013, 15, 6729-6735.
  3. Ferancova, A., Rengaraj, S., Kim, Y., Vijayalakshmi, S., Labuda, J., Bobacka, J. and Sillanpää, M. Electrochemical study of novel nanostructured In2S3 and its effect on oxidative damage to DNA purine bases. Electrochim. Acta., 2013, 92, 124-131.
  4. Xiao, Y.M., Wu, J., Lin, J.Y., Tai, S.Y. and Yue, G.T. Pulse electrodeposition of CoS on MWCNT/Ti as a high performance counter electrode for a Pt-free dye-sensitized solar cell. J. Mater. Chem. A., 2013, 1, 1289-1295.
  5. Wang, H., Liang, Q.Q., Wang, W.J., An, Y.R., Li, J.H. and Guo, L. Preparation of flower-like SnO2 nanostructures and their applications in gas-sensing and lithium storage. Cryst. Growth Des., 2011, 11, 2942-2947.
  6. Wang, Q.H., Jiao, L.F., Du, H.M., Yang, J.Q., Huan, Q.N., Peng, W.X., Si, Y.H., Wang, Y.J. and Yuan, H.T. Facile synthesis and superior supercapacitor performances of three-dimensional cobalt sulfide hierarchitectures. Cryst. Eng. Comm., 2011, 13, 6960-6963.
  7. Helmut, C. and Markus, A. Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed., 2005, 44, 5576-5591.
  8. Yang, J., Lin, C.K., Wang, Z.L. and Lin, J. In(OH)3 and In2O3 nanorod bundles and spheres: microemulsion-mediated hydrothermal synthesis and luminescence properties. Inorg. Chem., 2006, 45, 8973-8979.
  9. Kim, W.-T. and Kim, C.-D. Optical energy gaps of In2S3 thin films grown by spray pyrolysis. J. Appl. Phys., 1986, 60, 2631-2633.
  10. Jayakrishnan, R., Sebastian, T., John, T.T., Kartha, C.S. and Vijayakumar, K.P. Photoconductivity in sprayed β-In2S3 thin films under sub-band-gap excitation of 1.96 eV. J. Appl. Phys., 2007, 102, 043109.
  11. Calixto-Rodriguez, M., Tiburcio-Silver, A., Ortiz, A. and Sanchez-Juarez, A. Optoelectronical properties of indium sulfide thin films prepared by spray pyrolysis for photovoltaic applications. Thin Solid Films., 2005, 480-481, 133-137.
  12. Yang, M.Q., Weng, B. and Xu, Y.J. Synthesis of In2S3-CNT nanocomposites for selective reduction under visible light. J. Mater. Chem. A., 2014, 2, 1710-1720.
  13. Liu, G.D., Jiao, X. L., Qin, Z.H. and Chen, D.R. Solvothermal preparation and visible photocatalytic activity of polycrystalline β-In2S3 nanotubes. Cryst. Eng.Comm., 2011, 13, 182-187.
  14. Du, W.M., Zhu, J., Li, S. X. and Qian, X.F. Ultrathin β-In2S3 nanobelts: shape-controlled synthesis and optical and photocatalytic properties. Cryst. Growth Des., 2008, 8, 2130-2136.
  15. Rengaraj, S., Venkataraj, S., Tai, C.W., Kim, Y., Repo, E. and Sillanpää, M. Self-assembled mesoporous hierarchical-like In2S3 hollow microspheres composed of nanofibers and nanosheets and their photocatalytic activity. Langmuir, 2011, 27, 5534-5541.
  16. He, Y., Li, D., Xiao, G., Chen, W., Chen, Y., Sun, M., Huang, H. and Fu, X. A New application of nanocrystal In2S3 in efficient degradation of organic pollutants under visible light irradiation. J. Phys. Chem. C, 2009, 113, 5254-5262.
  17. Liu, Y., Xu, H.Y. and Qian, Y. Double-source approach to In2S3 single crystallites and their electrochemical properties. Cryst. Growth Des., 2006, 6, 1304-1307.
  18. Datta, A., Sinha, G., Panda, S.K. and Patra, A. Growth, optical, and electrical properties of In2S3 zigzag nanowires. Cryst. Growth Des., 2009, 1, 427-431.
  19. Kim, Y.H., Lee, J.H., Shin, D.W., Park, S. M., Moon, J.S., Nam, J.G. and Yoo, J.B. Synthesis of shape-controlled β-In2S3 nanotubes through oriented attachment of nanoparticles. Chem. Commun., 2010, 46, 2292-2294.
  20. Du, W.M., Zhu, J., Li, S.X. and Qian, X.F. Ultrathin β-In2S3 nanobelts: shape-controlled ynthesis and optical and photocatalytic properties. Cryst. Growth Des., 2008, 7, 2130-2136.
  21. Liu, Y., Zhang, M., Gao, Y.Q., Zhang, R. and Qian, Y.T. Effect of a phase-transfer catalyst on the chemical modification of poly(vinyl chloride) by substitution with thiocyanate as a nucleophile. Mater. Chem. Phys., 2007, 101, 362-366.
  22. Chai, B., Zeng, P., Zhang, X.H., Mao, J., Zan, L. and Peng, T.Y. Walnut-like In2S3 microspheres: ionic liquid-assisted solvothermal synthesis, characterization and formation mechanism. Nanoscale., 2012, 4, 2372-2377.
  23. Datta, A., Gorai, S., Ganguli, D. and Chaudhuri, S. Surfactant-assisted synthesis of In2S3 dendrites and their characterization. Mater. Chem. Phys., 2007, 102, 195-200.
  24. Revathi, N., Prathap, P., Subbaiah, Y. P.V. and Ramakrishna Reddy, K.T. Substrate temperature dependent physical properties of In2S3 films. J. Phys. D: Appl. Phys., 2008, 41, 155404.
  25. Wei, C.Y., Guo, W., Yang, J.Q., Fan, H.M., Zhang, J. and Zheng, W.J. Facile solvothermal synthesis of 3D flowerlike β-In2S3 microspheres and their photocatalytic activity performance. RSC Adv., 2014, 4, 50456-50463.
  26. Du, W.M., Qian, X. F., Niu, X.S. and Gong, Q. Symmetrical six-horn nickel diselenide nanostars growth from oriented attachment mechanism. Cryst. Growth Des., 2007, 7, 2733-2737.
  27. Burton, W.K., Cabrera, N. and Frack, F.C. The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. R. Soc. A., 1951, 243, 299-358.
  28. Qi, K.Z., Yu, J. and Chen, K. A simple surfactant-free route for preparation of flower-like crystals of CoS with hierarchitectures. Cryst. Res. Technol., 2013, 48, 1083-1086.
  29. Cheng, Z.P., Xu, J.M., Zhong, H., Chu, X.Z. and Song, J. Hydrogen peroxide-assisted hydrothermal synthesis of hierarchical CuO flower-like nanostructures. Mater. Lett., 2011, 65, 2047-2050.
  30. Prabakar, S., Bumby, C.W. and Tilley, R.D. Liquid-phase synthesis of flower-like and flake-like titanium disulfide nanostructures. Chem. Mater., 2009, 21, 1725-1730.
  31. Wang, C.Q., Chen, D.R. and Jiao, X.L. Flower-like In2O3 nanostructures derived from novel precursor: synthesis, characterization, and formation mechanism. J. Phys. Chem. C., 2009, 113, 7714-7718.
  32. Yu, X.X., Yu, J.G., Cheng, B. and Jaroniec, M. Synthesis of hierarchical flower-like AlOOH and TiO2/AlOOH superstructures and their enhanced photocatalytic properties. J. Phys. Chem. C., 2009, 113, 17527-17535.
  33. Li, B.X. and Wang, Y.F. Facile synthesis and enhanced photocatalytic performance of flower-like ZnO hierarchical microstructures. J. Phys. Chem. C., 2010, 114, 890-896.
  34. Tian, G.H., Chen, Y.J., Zhou, W., Pan, K., Dong, Y.Z., Tian, C.G. and Fu, H.G. Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts. J. Mater. Chem., 2011, 21, 887-892.
  35. Zhu, L.P., Liao, G.H., Yang, Y., Xiao, H.M., Wang, J.F. and Fu, S.Y. Self-assembled 3D flower-like hierarchical b-Ni(OH)2 hollow architectures and their in situ thermal conversion to NiO. Nanoscale Res Lett., 2009, 4, 550-557.
  36. Tawkaew, S., Fujishiro, Y., Yin, S. and Sato, T. Synthesis of cadmium sulfide pillared layered compounds and photocatalytic reduction of nitrate under visible light irradiation. Colloids Surf. A., 2001, 179, 139-144.
  37. Zhang, J., Shi, F.J., Chen, D.F., Gao, J.M., Huang, Z.X., Ding, X.X. and Tang, C.C. Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst. Chem. Mater., 2008, 20, 2937-2941.