Main Article Content

Abstract

The present study demonstrates the capability of a multispectral sensor for the detection of the minerals in the rocks surrounding the Rusayl and Al Jafnayn regions, Sultanate of Oman. The study of spectral absorptions of rocks and minerals in the visible and near infrared (VNIR) and short wavelength infrared (SWIR) spectral bands of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) using the Spectral Angle Mapper (SAM) supervised image classification technique has provided information on the occurrence of minerals in the rock types of the regions. The study shows the occurrence of carbonate minerals in the limestone formations and of poorly altered silicate minerals in the basic dyke rocks of the study regions. The analysis of minerals over the ancient terraces and recent alluvial deposits show that the deposit materials are derived from the dykes and foliated gabbro source rocks. The image interpretation is compared to the geological map, verified in the field and confirmed through laboratory analyses. The satellite data and the image processing techniques used have potential in the recognition of minerals in the rocks of the study region and could be used in similar arid regions elsewhere in the world.

 

 

Keywords

Minerals mapping Spectral absorptions SAM ASTER Sultanate of Oman.

Article Details

References

  1. Abrams, M.J., Rothery, D.A. and Pontual, A. Mapping in the Oman ophiolite using enhanced landsat thematic mapper images. Tectonophys., 1988, 151, 387-401.
  2. Bedell, R.L. Geological mapping with ASTER satellite: new global satellite data that is a significant leap in remote sensing geologic and alteration mapping. Special Publication Geol. Soc. Nevada, 2001, 33, 329-334.
  3. Ramadan, T. and Kontny, A. Mineralogical and structural characterization of alteration zones detected by orbital remote sensing at Shalatein District, SE Desert, Egypt. J. Afr. Earth Sci., 2004, 40, 89-99.
  4. Gad, S. and Kusky, T.M. Lithological mapping in the eastern desert of Egypt, the Barramiya area, using landsat thematic mapper (TM). J. Afr. Earth Sci., 2006, 44, 196-202.
  5. Zhang, X., Pazner, M., Duke, N. Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California). Photogrammetry & Remote Sensing, 2007, 62, 271-282.
  6. Amer, R., Kusky, T.M. and Ghulam, A. Lithological mapping in the central eastern desert of Egypt using ASTER data. J. Afr. Earth Sci., 2010, 56(2–3), 75-82.
  7. Rajendran, S., Thirunavukkarasu. A. Balamurugan. G. and Shankar. K. Discrimination of iron ore deposits of granulite terrain of Southern Peninsular India using ASTER data. J. Asian Earth Sci., 2011a, 41, 99-106.
  8. Tangestani, M.H., Jaffari, L. Vincent, R.K. and Maruthi, S.B.B. Spectral characterization and ASTER-based lithological mapping of an ophiolite complex: A case study from Neyriz ophiolite, SW Iran. Remote Sensing Environ., 2011, 115, 2243-2254.
  9. Rajendran, S. and Nasir, S. Aster spectral analysis of ultramafic lamprophyres (carbonatites and aillikites) within the Batain nappe, northeastern margin of Oman - a proposal developed for spectral absorption. Int. J. Remote Sensing, 2013, 34(8), 2763-2795.
  10. Rajendran, S., Hersi, Al-Harthy, O.S., Al-Wardi, A.R.., El-Ghali, A.M. and Al-Abri A.H. Capability of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on discrimination of carbonates and associated rocks and mineral identification of eastern mountain region (Saih Hatat Window) of Sultanate of Oman. Carbonates and Evaporites, 2011b, 26, 351-364.
  11. Rajendran, S., Al-Khirbash, S., Nasir, S., Al-Abri, A.H., Kusky, T.M. and Ghulam, A. ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman mountain: exploration strategy. Ore Geol. Rev., 2012, 44,121-135.
  12. Rajendran, S., Nasir, S., Kusky, T.M., Ghulam, A., Gabr, S. and El-Ghali, M. Detection of hydrothermal mineralized zones associated with Listwaenites rocks in the Central Oman using ASTER data. Ore Geo. Rev., 2013, 53, 470-488.
  13. Pinet, P., Harris, E., Python, M., Ceuleneer, G., Launeau, P., Daydou, Y., Cord, A., Al Azri, H., Chabrillat, S., Lenot, X. and Chevrel, S. Hyperspectral Remote Sensing Approach for Rock Surface Mineralogy Mapping in Arid Environment. IUGG XXXIII General Assembly, International Union of Geodesy and Geophys. Sapporo, Japan, 2003.
  14. Pinet, P.C., Clenet, H., Rosemberg, C., Ceuleneer, G., Heuripeau, F., Harris, E., Daydou, Y., Baratoux, D., Chevrel, S., Launeau, P., Combes, J-P., Lemouelic, S. and Sotin, C. Mantle Rock Surface Mineralogy Mapping in Arid Environment from Imaging Spectroscopy: The Case of the Maqsad Peridotitic Massif in Oman and Implications for the Spectroscopic Study of Exposed Mafic Units on Mars, LPSC 37th, Houston, # 1346, 2006.
  15. Combe, J.P., Launeau, P. Pinet, P. Despan, D. Harris, E. Ceuleneer, G. and Sotin, C. Mapping of an ophiolite complex by high–resolution visible-infrared spectrometry. Geochem. Geophys. Geosystems, 2006, 7(8), 1-11.
  16. Clenet, H., Pinet, Daydou, P.C. Heuripeau, Y. Rosemberg, F. and C. Ceuleneer, G. A sytematic testing approach using the Modified Gaussian Model (MGM) for mafic mineralogy mapping in natural conditions (Earth, Mars). Proc. Lunar Planetary Sci. Conf. XXXIX. 2008.
  17. Roy, R., Launeau, P. Carrere, V. Pinet, P.C. Ceuleneer, G. Clenet, H. Daydou, Y. Girardeau, J. and Amri, I. Geological mapping strategy using VNIR hyperspectral remote sensing: application to the Oman ophiolite (Sumail Massif). Geochem. Geophys. Geosystems, 10: Q02004. doi:10.1029/2008GC002154, 2008.
  18. Clenet, H., Ceuleneer, G., Pinet, P., Abily, B., Daydou, Y., Harris, E., Amri, I. and Dantas, C. Thick sections of layered ultramafic cumulates in the Oman ophiolite revealed by an airborne hyperspectral survey: petrogenesis and relationship to mantle diapirism. Lithos., 2010, 114, 265–281.
  19. Rajendran, S. and Nasir, S. ASTER spectral sensitivity of carbonate rocks - study in sultanate of Oman, Adv. Space Res., 2014b, 53, 656-673.
  20. Robertson A.H.F. and Searle, M.P. The Northern Oman Tethyan Continental Margin: stratigraphy, structure, concepts and controversies, the geology and tectonics of the Oman region. The Geol. Soc., London, 1990, 49, 3-25.
  21. Ministry of Petroleum and Minerals, Geological Map, Oman (1:100,000). SEEB Sheet NF 40-3C, 1986.
  22. Gupta, R.P. Remote Sensing Geology. 2nd Ed., Springer, Heidelberg, 2003.
  23. Clark, R.N., King, T.V.V. Klejwa, M. Swayze, G.A. and Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res., 1990, 95, 12653-12680.
  24. Van der MEER, F. Spectral reflectance of carbonate mineral mixtures and bidirectional reflectance theory: quantitative analysis techniques for application in remote sensing. Remote Sensing Rev., 1995, 13, 67-94.
  25. Clark, R.N. and Roush, T.L. Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. J. Geophy. Res., 1984, 89, 6329-6340.
  26. Gaffey, S.J. Reflectance spectroscopy in the visible and near infrared (0.35-2.55 microns): applications in carbonate petrology. Geol., 1985, 13, 270-273.
  27. Gaffey, S.J. Spectral reflectance of carbonate minerals in the visible and near infrared (0.35-2.55 microns): calcite, aragonite, and dolomite. Am. Miner., 1986, 71, 151-162
  28. Gaffey, S.J. Spectral reflectance of carbonate minerals in the visible and near infrared (0.35-2.55 microns): anhydrous carbonate minerals. J. Geophys. Res., 1987, 92(B2), 1429-1440.
  29. Crowley, J.K. Visible and near-infrared spectra of carbonate rocks: Reflectance variations related to petrographic texture and impurities. J. Geophys. Res., 1986, 91(B5), 5001-5012.
  30. Hunt, G.R. Spectroscopic Properties of Rocks and Minerals. In: Carmichael, R.S. (Ed.), Handbook of Physical Properties of Rock. CRC Press, Boca Raton, 1982, 1, 295-385.
  31. Hunt, G.R. Spectral signatures of particulate minerals in the visible and near infrared. Geophys. 1977, 42,501–513.
  32. Hunt, G.R. and Salisbury, J.W. Visible and near infrared spectra of minerals and rocks: II. Carbonates. Mod. Geol., 1971, 2, 23-30.
  33. Hunt, G.R. and Salisbury, J.W. Visible and near infrared spectra of minerals and rocks: I. Silicate minerals. Mod. Geol., 1970, 1, 283-300.
  34. Hunt, G.R., Salisbury, J.W. and Lenhoff, C.J. Visible and near-infrared spectra of minerals and rocks. IX, Basic and ultrabasic igneous rocks, Mod. Geol., 1974, 5, 15-22.
  35. Hunt, G.R. and Ashley, P. Spectra of altered rocks in the visible and near infrared. Eco. Geol.1979, 74, 1613-1629.
  36. Blom, R.G., Abrams, M.J. and Adams, H.G. Spectral reflectance and discrimination of plutonic rocks in the 0.45 to 2.45 μm region. J. Geophys. Res., 1980, 85, 2638-2648.
  37. Hunt, G.R. Near-infrared (1.3-2.4) spectra of alteration minerals-potential for use in remote sensing. Geophys., 1979, 44(12), 1974-1986.
  38. Clark. R.N. Spectroscopy of Rock and Minerals and Principles of Spectroscopy. In: Rencz, A.N. (Ed.), Remote Sensing for the Earth Sciences: Manual of Remote Sensing. 3th Ed., Vol.3, John Wiley & Sons, New York, 1999, 3-58.
  39. Rajendran, S. and Nasir, S. ASTER mapping of limestone formations and study of caves, springs and depressions in parts of Sultanate of Oman, Environ. Earth Sci., 2014a, 71, 133-146.
  40. Mars J.C. and Rowan L.C. Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sensing Environ., 2010, 114, 2011-2025.
  41. Gad, S. Kusky, T.M. ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Res., 2007, 11(3), 326-335.
  42. Rowan, L.C. and Mars, J.C. Lithologic mapping in the Mountain Pass Area, California using advanced spaceborne thermal emission and reflection radiometer (ASTER) Data. Remote Sensing Environ., 2003, 84, 350-66.
  43. Ninomiya, Y. Mapping quartz, carbonate minerals and mafic-ultramafic rocks using remotely sensed multispectral thermal infrared ASTER data. SPIE, 2002, 4710, 191-202.
  44. Abdeen, M.M., Thurmond, A.K. Abdelsalam, M.G. and Stern, R.J. Use of TERRA ASTER band-ratio images for geological mapping in arid regions: the Neoproterozoic Allaqi suture, Egypt. J. Remote. Sens. & Space Sci., 2002, 5, 19-40.
  45. Galvao, L.S., Filho, R.A. and Vitorello, C. Spectral discrimination of hydrothermal altered materials using ASTER Short-wave infrared bands, evaluation in a tropical Savannah Environment. Inter. J. Appl. Earth Obs. Geoinfor., 2005, 7, 107-114.
  46. Mars, J.C. and Rowan, L.C. Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms. Geosphere, 2006, 2(3), 161-186.
  47. Abrams, M. and Hook, S.J. Simulated ASTER data for geologic studies. IEEE Trans. Geosci. Remote Sens., 1995, 33(3).
  48. Rajendran, S., Nasir, S. Kusky T.M. and Al-Khirbash, S. Remote sensing based approach for mapping of CO2 sequestered regions in Semail Ophiolite Massifs of the Sultanate of Oman. Earth Sci. Rev., 2014, 135, 122-140.
  49. Kruse, F.A., Boardman, J.W. and Hunnington, J.F. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans. Geosci. Remote Sensing, 2003, 41(6), 1388-1400.
  50. Gabr, S., Ghulam, A. and Kusky, T. Detecting areas of high-potential gold mineralization using ASTER data. Ore Deposit Rev., 2010, 38, 59-69. 2010.
  51. Rajendran, S and Nasir, S. 2014c. Hydrothermal altered serpentinized zone and a study of Ni-magnesioferrite-magnetite-awaruite occurrences in Wadi Hibi, Northern Oman Mountain: discrimination through ASTER mapping, Ore Geol. Rev., 62, 211-226.
  52. Hecker, C.A., van der Meijde, M., van der Werff, H.M.A. and van der Meer, F.D. Assessing the influence of reference spectra on synthetic SAM classification results. IEEE Trans. Geosci. and Remote Sensing, 2008, 46(12), 4162-4172.
  53. Kruse, F.A., Lefkoff, A.B. Boardman, J.B. Heidebreicht, K.B. Shapiro, A.T. and Barloon, P.J. The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data. Remote Sensing Environ., 1993, 44: 145-163.
  54. Boardman, J.W. and Kruse, F.A. Automated spectral analysis: a geological example using AVIRIS data, north Grapevine Mountains, Nevada. Proc., ERIM Tenth Thematic Conference on Geologic Remote Sensing. Environmental Research Institute of Michigan, Ann Arbor, MI, 1994, I-407-I-418.