Main Article Content

Abstract

A family of implicit-in-time mixed finite element schemes is presented for the numerical approximation of the acoustic wave equation. The mixed space discretization is based on the displacement form of the wave equation and the time-stepping method employs a three-level one-parameter scheme. A rigorous stability analysis is presented based on energy estimation and sharp stability results are obtained. A convergence analysis is carried out and optimal a priorierror estimates for both displacement and pressure are derived.

     

 

Keywords

Energy technique Error estimation Mixed finite elements Wave equation.

Article Details

References

  1. Baker, G.A. Error estimates for finite element methods for second order hyperbolic equations. SIAM J. Numer. Anal., 1976, 13, 564-576.
  2. Bao, H., Bielak, J., Ghattas, O., Kallivokas, L.F., O'Hallaron, D.R., Shewchuk, J.R. and Xu, J. Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers. Comput. Methods Appl. Mech. Engrg., 1998, 152, 85–102.
  3. Cohen, G., Joly, P., Roberts, J.E. and Tordjman, N. Higher order triangular finite elements with mass lumping for the wave equation. SIAM J. Numer. Anal., 2001, 38, 2047-2078.
  4. Dupont, T. -estimates for Galerkin methods for second order hyperbolic equations. SIAM J. Numer. Anal., 1973, 10, 880–889.
  5. Marfurt, K.J. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations. Geophysics, 1984, 49, 533-549.
  6. Rauch, J. On convergence of the finite element method for the wave equation. SIAM J. Numer. Anal., 1985, 22, 245–249.
  7. Cowsar, L.C., Dupont, T.F. and Wheeler, M.F. A priori estimates for mixed finite element methods for the wave equation. Comput. Methods App. Mech. Engg., 1990, 82, 205-222.
  8. Cowsar, L.C., Dupont, T.F. and Wheeler, M.F. A priori estimates for mixed finite element approximations of second-order hyperbolic equations with absorbing boundary conditions. SIAM J. Numer. Anal., 1996, 33, 492-504.
  9. Geveci, T. On the application of mixed finite methods to the wave equation. RAIRO. Modél. Math. Anal. Numér.,1988, 22, 243–250.
  10. Jenkins, E.W., Rivière, B. and Wheeler, M.F. A priori error estimates for mixed finite element approximations of the acoustic wave equation. SIAM J. Numer. Anal., 2002, 40, 1698–1715.
  11. Pani, A.K. and Yuan, J.Y. Mixed finite element methods for a strongly damped wave equation. Numer. Methods Partial Differential Equations, 2001, 17(2), 105-119.
  12. Pani, A.K., Sinha, R.K. and Otta, A.K. An -Galerkin mixed method for second order hyperbolic equations. Int. J. Numer. Anal. Model., 2004, 1(2), 111-130.
  13. Vdovina, T. and Minkoff, S.E. An a priori error analysis of operator upscaling for the acoustic wave equation. Inter. J. Numer. Anal. model., 2008, 5, 543-569.
  14. Grote, M.J. and Schötzau, D. Optimal error estimates for the fully discrete interior penalty DG method for the wave equation. J. Sci. Comput., 2009, 40, 257-272.
  15. Johnson, C. Discontinuous Galerkin finite element methods for second order hyperbolic problems. Comput. Methods Appl. Mech. Engrg., 1993, 107, 117–129.
  16. Rivière B. and Wheeler, M.F. Discontinuous finite element methods for acoustic and elastic wave problems. Part I: Semidiscrete error estimates. TICAM report 01–02, University of Texas, Austin, TX, 2001.
  17. Rivière, B. and Wheeler, M.F. Discontinuous finite element methods for acoustic and elastic wave problems. in ICM2002-Beijing Satellite Conference on Scientific Computing, Contemporary Mathematics, AMS, Providence, 2003, 329, 271-282.
  18. Glowinski, R., Kinton, W. and Wheeler, M.F. A mixed finite element formulation for boundary controllability of the wave equation. Int. J. Num. Meth. Engng., 1989, 27, 623-635.
  19. Knops, R.J. and Payne, L.E. Uniqueness Theorems in Linear Elasticity. Springer Tracts Nat. Philos, 19, Springer-Verlag, Berlin, 1971.
  20. Jenkins, E.W. Numerical solution of the acoustic wave equation using Raviart-Thomas elements. J. Comput. Appl. Math., 2007, 206, 420–431.
  21. Raviart, R.A. and Thomas, J.M. Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics, Springer, Berlin, 1997, 106, 292-315.
  22. Nedelec, J.C. Mixed finite elements in Numer. Math., 1980, 35, 315–341.
  23. Brezzi, F., Douglas, Jr. J. and Marini, L.D. Two families of mixed elements for second order elliptic problems. Numer. Math., 1985, 88, 217–235.
  24. Brezzi, F., Douglas, J., Fortin, Jr. M. and Marini, L.D. Efficient rectangular mixed finite elements in two and three space variables. RAIRO Modèl. Math. Anal. Numér., 1987, 21, 581-604.
  25. Karaa, S. Finite element -schemes for the acoustic wave equation. Adv. Appl. Math. Mech., 2011, 3, 181-203.
  26. Karaa, S. Stability and convergence of fully discrete finite element methods for the acoustic wave equation. J. Appl. Math. Comput., 2012, 40, 659-682.