Main Article Content

Abstract

Thermal and other physical properties of rocks and minerals are of considerable significance for deriving mineralogical and compositional models of the Earth's mantle. We have determined these properties for the mafic rock such as gabbro and ultramafic rock like harzburgite of the Oman ophiolite suite by utilizing the Debye characteristic property ,Θ-

Keywords

Debye temperature Melting temperature Specific heat capacity Thermal conductivity Diffusivity Ophiolite.

Article Details

References

  1. Anderson, O.L. Thermoelastic properties of MgSiO3 perovskite using Debye approach, American Mineralogist, 1998, 83, 23-35.
  2. Anderson, O.L., Isaak D.G. and Nelson, V.E. The high-pressure melting temperature of hexagonal close-packed iron determined from thermal physics, J. Phys. and Chem. Solids, 2003, 64, 2125-2131.
  3. Anderson, D.L. Temperature and pressure derivatives, J. Geophys. Res., 1988, 93, 4688-4700.
  4. Sternik, M. and Parlinski, K. Ab initio calculations of the stability and lattice dynamics of the post-perovskite, J. Phys. Chem. Solids, 2006, 67, 796-800.
  5. Fujiwara, H., Ueda, Y., Awasthi, A., Krishnamurthy, N. and Garg, S.P. Thermodynamic study on refractory metal silicides, J. Phys. Chem. Solids, 2005, 66, 298-302.
  6. Wei Lu and Baosheng Li, Thermal equation of state of olivine, Phys. Earth. Planet. Inter., 2006, 157, 188-195.
  7. Dergachov, A. L. and Starostin, V.I. The Debye characteristic temperature as indicator for formation and transformation conditions of rocks and ores, Ore Deposit Geology, 1981, 6, 67-75.
  8. Christensen, N.I. and Smewing, J.D. Geology and seismic structure of the northern section of the Oman ophiolite, J. Geophys. Res., 1981, 86, 2545-2555.
  9. Liping, B., Jianguoang, D. and Wei, L. Experimental studies of electrical conductivities and P-wave velocities of gabbro at high pressures and high temperatures, Sci. China, Ser. D Earth Sci., 2003, 46, 895.
  10. Moores, E.M. and Jackson, E.D. Ophiolites and oceanic crust, Nature,1974, 228, 837-842.
  11. Coleman, R.G., Introduction to the Oman ophiolite special issue, J. Geophys. Res., 1981, 86, 2495-2496.
  12. Kusky, T., Robinson, C. and El-Baz, F. Tertiary–Quaternary faulting and uplift in the northern Oman Hajar Mountains, Journal of the Geological Society, 2005, 162, 871-888, doi:10.1144/0016-764904-122 http://wmblogs.wm.edu/cmbail/dispatches-from-oman-juxtaposition/
  13. Boudier, F. and Coleman, R.G. Cross-section through the peridotite in the Samail ophiolite, Southeastern Oman, J. Geophys. Res., 1981, 86, 2573-2592.
  14. Korenaga, J. and Klemen, P.B., Origin of gabbro sills in the Moho transition zone of the Oman ophiolite: Implications for magma transport in the oceanic lower crust, J. Geophys. Res., 1997, 102(B12), 27,729-27,749.
  15. Arafin, S., Singh, R.N. and George, A.K. Extension of Lindemann’s Formula to Study the Pressure Dependence of Melting Temperature Int. J. Thermophys. 2012, 33:1013–1022, DOI 10.1007/s10765-012-1227-8S.
  16. Anderson, O.L. Equations of State of Solids for Geophysics and Ceramic Science, Oxford University Press, New York, 1995
  17. Anderson, O.L. Isaak, D.G. Mineral Physics and Crystallography, A Handbook of Physical Constants, AGU Reference Shelf 2, 1995, 64-97
  18. Kittel, C. Introduction to Solid State Physics, (7th Edition), Wiley, New York,1996.
  19. Mott, N.F. and Jones, H. The Theory of the Properties of Metals and Alloys, (2nd Edition). Oxford University Press, Oxford, 1936.
  20. Waples, D.W. and Waples, J.S. A Review and Evaluation of Specific Heat Capacities of Rocks, Minerals, and Subsurface Fluids. Part 1: Minerals and Nonporous Rocks, Natural Resources Research, 2004, 13, 97-122.
  21. Horai, K. and Simmons, G. An empirical relationship between thermal conductivity and Debye temperature for silicates, J. Geophys. Res., 1970, 75, 678.
  22. Keiffer, H.H. Temperature of rock thermal properties, File=/xtex/tes/krc/HeatOfT.tex 2010feb, July 19, 2010
  23. Mottaghy, D., Vosteen, H.D. and Schellschmidt, R. Temperature dependence of the relationship of thermal diffusivity versus thermal conductivity for crystalline rocks. Int. J. Earth Sci, 2008, 97(2), 435-442. DOI 10.1007/s00531-007-0238-3.
  24. Gibert, B., Seipold, U., Tommasi, A. and Mainprice, D. Thermal diffusivity of upper mantle rocks: Influence of temperature, pressure, and the deformation fabric, J. Geophys. Res., 2003, 108 : 2359.
  25. Lindemann, F.A. Uber die Berechnung molecularer Eigenfrequenzen, 1910, Phys. Z. 11, 609–612.
  26. Faber, T.E., Introduction to Theory of Liquid Metals, Cambridge University Press, Cambridge,1972.
  27. Andrade E.N. A theory of the viscosity of liquids, Phil. Mag., 1934, 17 : 497
  28. Iida, T. and Guthrie, R.I.L. The Physical Properties of Liquid Metals, Clarendon Press, Oxford, 1988.
  29. Anderson, D.L, Theory of the Earth, Caltech Books, Caltech, Pasadena,1989.
  30. Brandes, E.A. and Brook, G.B. (Edited), Smithshells Metals Reference Book (7th Edition), Butterworth-Heinemann, Oxford, 1992.