Main Article Content

Abstract

Several samples of laterites were collected from four paleosol profiles, Ibra, East Ibra, Al-Russayl, and Tiwi representing the vertical lithological variation within each profile. The mineralogical and geochemical composition of laterites in every section revealed differences in thickness and redistribution of elements reflecting different conditions of weathering processes. Elemental mass balance was calculated for every profile relative to the parent rock. The results indicated redistribution of elements from the surface to deeper zones with an enrichment of elements in the saprolite and oxide zones. Among the different sections, the profile of East Ibra composite 1 and 2 is characterized by high concentration of all elements compared to the other profiles. Sc/Fe ratio in different zones indicates low values for the profile of Tiwi profile 1, Ibra profile and Al-Russayl composite 2 and 3 profile due to the significant enrichment of Fe in these zones independently of redox conditions. Large fluctuations characterize Th/U ratios and reflect redox condition more reduced in Tiwi area than in East Ibra and Al-Russayl areas.

 

 

Keywords

Laterite Oman Mass balance Profile Enrichment Economy.

Article Details

References

  1. Al-Khirbash, S., Semhi, K, Richard, L. and Nasir, S. Rare earth element mobility during laterization of mafic rocks of the Oman ophiolite. Arab J Geosci., 2013b. DOI 10.1007/s12517-013-1189-6.
  2. Zeissink, H.E. Trace elements behaviour in two nickeliferous laterite profiles. Chem.Geol., 1971, 7, 25-36.
  3. Evans, A.M. Ore Geology and Industrial Minerals — An Introduction. Blackwell, London, 1993, p389.
  4. Nayak, B.K., Das, S.K., Rajeev, S.K., Muralidhar, J., and Sahoo, R.K. Four-dimensional trend surface analysis and its implications on the distribution of Ni, Co, Fe2O3, Cr2O3, SiO2 and Al2O3 in the nickeliferous laterite overburden of South Kaliapani chromite deposit, Sukinda ultramafic belt, Orissa, India. J. Min. Petr. Econ. Geol., 1998, 93, 195-206.
  5. Hill, I.G., Worden, R.H., and Meighan, I.G. Geochemical evolution of a palaeolaterite: the Interbasaltic Formation, Northern Ireland. Chemical Geol., 2000a, 166 (1), 65-84.
  6. Jin-Long, MA., Gang-Jian Wei, Yi-Gang Xu, Wen-Guo Long, and Wei-Dong Sun. Mobilization and re-distribution of major and trace elements during extreme weathering of basalt in Hainan Island, South China. Geochimica et Cosmochimica Acta, 2007, 71, 3223-3237.
  7. Elias, M., Donaldson, M.J., and Giorgetta, N. Mineralogy and geochemistry of lateritic nickel cobalt deposits near Kalgoorlie, Western Australia, Econ. Geol., 1981, 76, 1775-1783.
  8. Elias, M. Nickel laterite deposits – Geological overview, resources and exploitation. In Giant ore Deposits: Characteristics, Genesis and Exploration (Eds. David, R.C. and June, P.) Codes Special Publication 2002, 4, 205–220.
  9. Gleeson, S.A., Butt, C.M.R., and Andelias, M. Nickel laterites: a review, SEG Newsletter Soc. Econ. Geosci., 2003, 54, 9–16.
  10. Gleeson, S.A., Herrington, R.J., Durango, J., Velazquez, C.A., and Koll, G. The mineralogy and geochemistry of de Cerro Matoso S. Ni laterite deposit, Montelíbano, Colombia. Econ Geol., 2004, 99, 1197–1213.
  11. Sagapoa, C.V., Imai, A., Ogata, T., Yonezu, K., and Watanabe, K. Laterization Process of Ultramafic Rocks in Siruka, Solomon Islands. J. SE Asian Appl. Geol., 2011, 3(2), 76-92.
  12. Al-Khirbash, S. Genesis and Mineralogical Classification of Ni-laterites, Oman Mountains. Ore Geol. Rev., 2015, 65, 199–212.
  13. Goodenough, K.M., Styles, M.T., Schofield, D., Thomass, R.J., Crowley, Q.C., Lilly, R.M., McKervey, J., Stephenson, D., and Carney, J.N. Architecture of the Oman–UAE Ophiolite: Evidence for a multi-phase magmatic history. In Lithosphere Dynamics and Sedimentary Basins: The Arabian Plate and Analogues Frontiers in Earth Sciences (Eds. Al Hosani, K., Roure, R., Ellison, R., and Stephen, L.). 2013, 23-42. doi 10.1007/978-3642-30609-9.
  14. Glennie, K.W., Bœuf, M.G.A., Hughes, C.W., Moody-Stuart, M., Pilaar, W.F.H., and Reinhardt, B.M. Late Cretaceous nappes in the Oman Mountains and their geologic significance. Am Assoc of Petroleum Geologists Bull., 1973, 57, 5-27
  15. Colman, S.M. Chemical weathering of basalts and andesites: evidence from weathering rinds. U.S. Geol. Surv. Prof. Pap., 1982, 1246, 1-51.
  16. Al-Khirbash, S., Nasir, S., Al-Harthy, A., Richard, L., Al-Sayigh, A., Darkel, A., and Semhi, K. Geology and Ni-Co Mineralization of Laterites of the Oman Mountains, 7th International Symposium on the Eastern Mediterranean Geology, 18-22 October, 2010, Cukurova University, Adana – Turkey
  17. Al-Khirbash, S., Richard, L., Nasir, S., Al-Sayigh, A., and Semhi, K. Geology and economic potentiality of Ni-laterites in the Oman Mountains, 10th meeting of the Saudi Society for Geoscience, Dhahran, April 15-17, 2013a.
  18. Rollinson, H.R., Searle, M. P., Abbasi, I.A., Al-Lazki, A., and Al Kindi, M. Tectonic evolution of the Oman Mountains: an introduction. In Tectonic Evolution of the Oman Mountains. (Eds. Rollinson, H.R., Searle, M. P., Abbasi, I.A., Al-Lazki, A., and Al Kindi, M.), Geological Society of London Special Publication, London. 2014, 392, 1–7. http://dx.doi.org/10.1144/SP392.1.
  19. Abbasi, I. A., Salad Hersi, O. and Al-Harthy, A. Late Cretaceous conglomerates of the Qahlah Formation, north Oman. In Tectonic Evolution of the Oman Mountains. (Eds. Rollinson, H.R., Searle, M. P., Abbasi, I.A., Al-Lazki, A. and Al Kindi, M.), Geological Society of London Special Publication, London. 2014, 392, 325–341. http://dx.doi.org/10.1144/SP392.17.
  20. Chesworth, W., Dejou, J., and Larroque, P. The Weathering of basalt and relative mobilities of the major elements at Belbex, France. Geochimica et Cosmochimica Acta, 1981, 45, 1235–1243.
  21. Middelburg, J.J., Weijden Van Der, C.H., and Woittiez, J.R.W. Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chem. Geol., 1988, 68, 253-273.
  22. Ndjigui, P.D., Bilong, P., Bitom, D., and Dia, A. Mobilization and redistribution of major and trace elements in two weathering profiles developed on serpentinites in the Lomié ultramafic complex, South-East Cameroon. J. African Earth Sciences, 2008, 50 (5), 305-328.
  23. Nesbitt, H.W. Mobility and fractionation of rare earth elements during weathering of a granodiorite, Nature, 1979, 279, 206 - 210.
  24. Gouveia, M.A., Prudencio, M.I., Figueiredo, M.O., Pereira, L.C.J., Waerenborgh, J.C., Morgado, I., Pena, T., and Lopes, A. Behaviour of REE and other trace and major elements during weathering of granitic rocks, Evora, Portugal. In Geochemistry of the Earth Surface. (L.R. Kump, L.R., Guest Editor), Chem. Geol., 1993, 107, 293-296.
  25. Hill, I.G., Worden, R.H., and Meighan, I.G. Yttrium: the immobility-mobility transition during basaltic weathering. Geology, 2000b, 28 (10), 923–926.
  26. Braun, J.J., Marechal, J.C., Riotte, J., Bbeglin, J.L., Bedimo, J.P., Ndam Ngoupayou, J.R., Brunot Nyeck, Robain, H., Sekhar, M., Audry, S. and Viers, J. Elemental weathering fluxes and saprolite production rate in a Central African lateritic terrain (Nsimi, South Cameroon). Geochimica et Cosmochimica Acta, 2012, 99, 243–270.
  27. Trolard, F., Bourrie, G., Jeanroy, E., Herbillon, A.J., and Martin, H. Trace metals in natural iron oxides from laterites: A study using selective kinetic extraction. Geochimica et Cosmochimica Acta, 1995, 59(7), 1285-1297.
  28. Fan, R., and Gerson, A.R. Nickel geochemistry of a Philippine laterite examined by bulk and microprobe synchrotron analyses. Geochimica et Cosmochimica Acta, 2011, 75, 6400–6415.
  29. Stahl, R.S. and James, B.R. Zinc sorption by B horizon soils as a function of pH. Soil Sci. Soc. Am. J., 1991, 55, 1592–1597.
  30. Vulav, V. and Seaman, J.C. Mobilization of Lead from Highly Weathered Porous Material by Extracting Agents. Environ. Sci. Technology, 2000, 34, 4828-4834.
  31. Covelo, E.F., Andrade, M.L., and Vega, F.A. Heavy metal adsorption by humic umbrisols: selectivity sequences and competitive sorption kinetics. J. Colloid Interface Sci., 2004, 280, 1–8.
  32. Tansupoa, P., Budzikiewiczb, H., Chanthaia, S. and Ruangviriyachai, C. Effect of pH on the mobilization of copper and iron by pyoverdin I in artificially contaminated soils. Science Asia, 2008, 34, 287-292.
  33. Brown D.J., Helmke P. A., and Clayton M. K. Robust geochemical indicies for redox and weathering on a granitic laterite landscape in central Uganda. Geochimica et Cosmochimica Acta, 2003, 67, 2711–2723.
  34. Lucas, Y. Systèmes pédologiques en Amazonie brésilienne: equilibres, déséquilibres et transformations, 1989, Thèse de Doctorat, Université de Poitiers.
  35. Giral-Kacmarc k , S., Savin, S.M., Girard, J.P., Lucas, Y., and Abel, L. Oxygen isotope geochemistry of kaolinite in laterite-forming processes, Manaus, Amazonas, Brazil. Geochimica et Cosmochimica Acta, 62(11), 1865-1879.
  36. Doveton, J.D. Lithofacies and geochemical facies profiles from nuclear wireline logs: new subsurface templates for sedimentary modelling. In Sedimentary modellingcomputer simulations and methods for improved parameter definition (Eds. Franseen, E.K., Watney, W.L., Kendall, C.J. and Ross, W.), Kansas Geological Society Bulletin 1991, 233, 101-110.
  37. Taylor, S.R. and Mclennan, S.M. The Continental Crust: Its Composition and Evolution. Blackwell Scientific, Oxford, 1985, p312.
  38. McLennan, S.M. and Taylor, S.R. Th and U in sedimentary rocks: crustal evolution and sedimentary cycling. Nature, 1980, 285, 621-624.
  39. Hemming, S.R. and McLennan, S.M. Pb isotope compositions of modern deepsea turbidites. Earth and Planetary Science Letters 2001, 184, 489-503.
  40. Krogstad, E., M Fedo, C., and Eriksson, K.A. Provenance ages and alteration histories of shales from the Middle Archean Buhwa greenstone belt, Zimbabwe: Nd and Pb isotopic evidence. Geochimica et Cosmochimica Acta, 2004, 68, 319-332.
  41. Condie, K.C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem. Geol., 1993, 104, 1-37.