Main Article Content

Abstract

A study on spin transfer torque switching in a magnetic tunnel junction with perpendicular magnetic anisotropy is presented. The switching current can be strongly reduced under a spin torque oscillator (STO), and its use in addition to the conventional transport in magnetic tunnel junctions (MTJ) should be considered. The reduction of the switching current from the parallel state to the antiparallel state is greater than in  the opposite direction, thus minimizing the asymmetry of the resistance versus current in the hysteresis loop. This reduction of both switching current and asymmetry under a spin torque oscillator occurs only during the writing process and does not affect the thermal stability of the free layer.

Keywords

Magnetic random access memory Spin transfer torque Magnetization reversal Magnetic tunnel junction Spin torque oscillator.

Article Details

References

  1. Slonczewski, J.C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater., 1996, 159, L1−L7.
  2. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B, 1996, 54, 9353-9358.
  3. Myers, E.B., Ralph, D.C., Katine, J.A., Louie, R.N. and Buhrman, R.A. Current-induced switching of domains in magnetic multilayer devices. Science, 1999, 285, 867-870.
  4. Katine, J.A., Albert, F.J., Buhrman, R.A., Myers, E.B. and Ralph, D.C. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co. Phys. Rev. Lett., 2000, 84, 3149-3152.
  5. Sbiaa, R., Meng, H. and Piramanayagam, S.N. Materials with perpendicular magnetic anisotropy for magnetic random access memory. Phys. Status Solidi RRL, 2011, 5, 413-419.
  6. Mangin, S., Ravelosona, D., Katine, J.A., Carey, M.J., Terris, B.D. and Fullerton, E.E., Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nature Mater., 2006, 5, 210-215.
  7. Meng, H. and Wang, J.P. Spin transfer in nanomagnetic devices with perpendicular anisotropy. Appl. Phys. Lett., 2006, 88, 172506-172508.
  8. Law, R., Sbiaa, R., Liew, T. and Chong, T.C. Magnetoresistance and switching properties of Co-Fe/Pd-based perpendicular anisotropy single- and dual-spin valves. IEEE Trans. Magn., 2008, 44, 2612-2615.
  9. Ikeda, S., Miura, K., Yamamoto, H., Mizunuma, K., Gan, H.D., Endo, M., Kanal, S., Hayakawa, J., Mstsukura, F. and Ohno, H. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nature Mater., 2010, 9, 721-724.
  10. Yakushiji, K., Saruya, T., Kubota, H., Fukushima, A., Nagahama, T., Yuasa, S. and Ando, K. Ultrathin Co/Pt and Co/Pd superlattice films for MgO-based perpendicular magnetic tunnel junctions. Appl. Phys. Lett., 2010, 97, 232508-232510.
  11. Rahman, M.T., Lyle, A., Hu, G., Gallagher, W.J. and Wang, J.P. High temperature annealing stability of magnetic properties in MgO-based perpendicular magnetic tunnel junction stacks with CoFeB polarizing layer. J. Appl. Phys., 2011, 109, 07C709-07C711.
  12. Sbiaa, R., Law, R., Lua, S., Tan, E.L., Tahmasebi, T., Wang, C.C. and Piramanayagam, S.N. Spin transfer torque switching for multi-bit per cell magnetic memory with perpendicular anisotropy. Appl. Phys. Lett., 2011, 99, 092506-092506-3.
  13. Worledge, D.C., Hu, G., Abraham, D.W., Sun, J.Z., Trouilloud, P.L., Nowak, J., Brown, S., Gaidis, M.C., O’Sullivan, E.J. and Robertazzi, R.P. Spin torque switching of perpendicular Ta/CoFeB/MgO-based magnetic tunnel junctions. Appl. Phys. Lett., 2011, 98, 022501-1-022501-3.
  14. Amiri, P.K., Zeng, Z.M., Langer, J., Zhao, H., Rowlands, G., Chen, Y.J., Krivorotov, I.N., Wang, J.P., Jiang, H.W., Katine, J.A., Huai, Y., Galatsis, K. and Wang, K.L. Switching current reduction using perpendicular anisotropy in CoFeB–MgO magnetic tunnel junctions. Appl. Phys. Lett., 2011, 98, 112507-1-112507-4.
  15. Lee, D.Y., Shim, T.H. and Park, J.G. Effects of Pt capping layer on perpendicular magnet anisotropy in pseudo-spin valves of Ta/CoFeB/MgO/CoFeB/Pt magnetic-tunneling junctions. Appl. Phys. Lett., 2013, 102, 212409-1-212409-3.
  16. Koo, J.W., Mitani, S., Sasaki, T.T., Sukegawa, H., Wen, Z.C., Ohkubo, T., Niizeki, T., Inomata, K. and HONO, K. Large perpendicular magnetic anisotropy at Fe/MgO interface. Appl. Phys. Lett., 2013, 103, 192401-1-192401-3.
  17. Meng, H., Sbiaa, R., Akhtar, M.A.K., Liu, R.S., Naik, V.B. and Wang, C.C. Electric field effects in low resistance CoFeB-MgO magnetic tunnel junctions with perpendicular anisotropy. Appl. Phys. Lett., 2012, 100, 122405-1-122405-3.
  18. Ozatay, O., Emley, N.C., Braganca, P.M,. Garcia, A.G.F., Fuchs, G.D., Krivorotov, I.N., Buhrman, R.A. and Ralph, D.C. Spin transfer by nonuniform current injection into a nanomagnet. Appl. Phys. Lett., 2006, 88, 202502-202504.
  19. Sato, H., Yamanouchi, M., Miura, K., Ikeda, S., Gan, H.D., Mizunuma, K., Koizumi, R., Matsukura, F. and Ohno, H. Junction size effect on switching current and thermal stability in CoFeB/MgO perpendicular magnetic tunnel junctions. Appl. Phys. Lett., 2011, 99, 042501-1-042501-3.
  20. Meng, H., Sbiaa, R., Lua, S.Y.H., Wang, C.C., Akhtar, M.A.K., Wong, S.K., Luo, P., Carlberg, C.J.P. and Ang, K.S.A. Low current density induced spin-transfer torque switching in CoFeB-MgO magnetic tunnel junctions with perpendicular anisotropy. J. Phys. D: Appl. Phys., 2011, 44, 405001-1-405001-4.
  21. Jiang, X., Moriya, R. and Parkin, S. Reducing spin torque switching current density by boron insertion into a CoFeB free layer of a magnetic tunnel junction. Appl. Phys. Lett., 2012, 100, 172407-1-172407-4.
  22. Wang, C.C., Bin Akhtar, M.A.K., Sbiaa, R., Meng, H., Sunny, L.Y.H., Wong, S.K., Ping, L., Carlberg, P. and Arthur, A.K.S. Size dependence effect in MgO-based CoFeB tunnel junctions with perpendicular magnetic anisotropy. Jpn. J. Appl. Phys., 2012, 51, 013101-1-013101-5.
  23. Sbiaa, R. and Morita, H. Magnetoresistance and thermal stability enhancement in FeCr-based spin valves. Appl. Phys. Lett., 2004, 84, 5139-5141.
  24. Sato, H., Yamanouchi, M., Ikeda, S., Fukami, S., Matsukura, F. and Ohno, H. Perpendicular-anisotropy CoFeB-MgO magnetic tunnel junctions with a MgO/CoFeB/Ta/CoFeB/MgO recording structure. Appl. Phys. Lett., 2012, 101, 022414-1-022414-3.
  25. Naik, V.B., Meng, H. and Sbiaa, R. Thick CoFeB with perpendicular magnetic anisotropy in CoFeB-MgO based magnetic tunnel junction. AIP Adv., 2012, 2, 42182-1-42182-9.
  26. Liu, X., Zhang, W., Carter, M.J. and Xiao, G. Ferromagnetic resonance and damping properties of CoFeB thin films as free layers in MgO-based magnetic tunnel junctions. J. Appl. Phys., 2011, 110, 033910-1-033910-5.
  27. Kiselev, S.I., Sankey, J.C., Krivorotov, I.N., Emley, N.C., Schoelkope, R.J., Buhrman, R.A. and Ralph, D.C. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature, 2003, 425, 380-383.
  28. Sim, C.H., Moneck, M., Liew, T. and Zhu, J.-G. Frequency-tunable perpendicular spin torque oscillator. J. Appl. Phys., 2012, 111, 07C914-1-07C914-3.
  29. Houssameddine, D., Ebels, U., Delaet, B., Rodmacq, B., Firastrau, I., Ponthenier, F., Brunet, M., Thirion, C., Michel, J.P., Prejbeanu-Buda, L., Cyrille, M.C., Redon, O. and Dieny, B. Spin-torque oscillator using a perpendicular polarizer and a planar free layer. Nature Mater., 2007, 6, 447-453.
  30. Heinonen, O.G., Stokes, S.W. and J.Y.YI. Perpendicular Spin Torque in Magnetic Tunnel Junctions. Phys. Rev. Lett., 2010, 105, 66602-66605.
  31. Devolder, T., Crozat, P. and Chappert, C., Miltat J. and Yagami, K. Instability threshold versus switching threshold in spin-transfer-induced magnetization switching. Phys. Rev. B, 2005, 71, 184401-1-184401.