Main Article Content

Abstract

Ab initio calculations were carried out to study the geometry, solvation free energy, dipole moment, molecular electrostatic potential (MESP), Mulliken and Natural charge distribution, polarizability, hyperpolarizability, Natural Bond Orbital (NBO) energetic and different molecular properties like global reactivity descriptors (chemical hardness, softness, chemical potential, electronegativity, electrophilicity index) of 2-methylimidazole. B3LYP/6-31G(d,p) level of theory was used to optimize the structure both in the gas phase and in solution. The solvation free energy, dipole moment and molecular properties were calculated by applying the Solvation Model on Density (SMD) in four solvent systems, namely water, dimethylsulfoxide (DMSO), n-octanol and chloroform. The computed bond distances, bond angles and dihedral angles of 2-methylimidazole agreed reasonably well with the experimental data except for C(2)-N(1), C(4)-C(5) and N(1)-H(7) bond lengths and N(1)-C(5)-C(4) bond angle. The solvation free energy, dipole moment, polarizability, first order hyperpolarizability, chemical potential, electronegativity and electrophilicity index of 2-methylimidazole increased on going from non-polar to polar solvents. Chemical hardness also increased with increasing polarity of the solvent and the opposite relation was found in the case of softness. These results provide better understanding of the stability and reactivity of 2-methylimidazole in different solvent systems.

 

 

Keywords

2-Methylimidazole Solvation free energy Dipole moment Polarizability Solvation model.

Article Details

References

  1. Chan, P.C. NTP technical report on the toxicity studies of 2- and 4-Methylimidazole (CAS No. 693-98-1 and 822-36-6) administered in feed to F344/N rats and B6C3F1 mice. Toxic. Rep. Ser., 2004, 67, 1–G12.
  2. Mukherjee, A., Kumar, S., Seth, M. and Bhaduri, A.P. Synthesis of 1-methyl-4-nitro-5-substituted imidazole and substituted imidazolothiazole derivatives as possible antiparasitic agents. Indian J. Chem., 1989, B28, 391–396.
  3. Norman, S.M., Bennet, R.D., Poling, S.M., Maier, V.P. and Nelson, M.D. Paclobutrazol inhibits abscisic acid biosynthesis in Cercospora rosicola. Plant Physiol., 1986, 80, 122–125.
  4. Erera, H., Yeşilela, O.Z., Darcanb, C. and Büyükgüngör, O. Synthesis, spectroscopic, thermal studies, antimicrobial activities and crystal structures of Co(II), Ni(II), Cu(II) and Zn(II)-orotate complexes with 2-methylimidazole. Polyhedron, 2009, 28, 3087–3093.
  5. Hachula, B., Nowak, M. and Kusz J. Crystal and molecular structure analysis of 2-methylimidazole. J. Chem. Crystallogr., 2010, 40, 201–206.
  6. Khabnadideh, S., Rezaei, Z., Khalafi-Nezhad, A., Bahrinajafi, R., Mohamadi, R. and Farrokhroz, A.A. Synthesis of N-Alkylated derivatives of imidazole as antibacterial agents. Bioorg. Med. Chem. Lett., 2003, 13, 2863–2865.
  7. Sanders, J.M., Griffin, R.J., Burka, L.T. and Matthews, H.B. Disposition of 2-methylimidazole in rats. J. Toxicol. Environ. Health, 1998, A 54,121–132.
  8. Johnson, J.D., Reichelderfer, D., Zutshi, A., Graves, S., Walters, D. and Smith, J. Toxicokinetics of 2-methylimidazole in male and female F344 rats. Toxicol. Environ. Health, 2002, A 65, 869–879.
  9. Chan, P.C., Sills, R.C., Kissling, G.E., Nyska, A. and Richter, W. Induction of thyroid and liver tumors by chronic exposure to 2-methylimidazole in F344/N rats and B6C3F1 mice. Arch. Toxicol., 2008, 6, 399–412.
  10. Moore-Testa, P., Saint-Jalm, Y. and Testa A. Identification and determination of imidazole derivatives in cigarette smoke. J. Chromatogr., 1984, 290, 263–274.
  11. Wilkinson, C.F. and Hetnarski, K. Structure-activity relationships in the effects of 1-alkylimidazoles on microsomal oxidation in vitro and in vivo. Biochem. Pharmacol., 1974, 23, 2377–2386.
  12. Jimenez, P., Roux, M.V. and Turrion, C. Thermochemical properties of N-heterocyclic compounds IV. Enthalpies of combustion, vapour pressures and enthalpies of sublimation, and enthalpies of formation of 2-methylimidazole and 2-ethylimidazole. J. Chem. Thermodynamics, 1992, 24, 1145-1149.
  13. Yu, X.Y., Cai, S.H., Xu, X. and Chen, Z. NMR and theoretical study on the coordination and solution structures of the Interaction between diperoxovanadate complexes and histidine-like ligands. Inorg. Chem., 2005, 44, 6755-62.
  14. Hernández-Marín, E. and Lemus-Santana, A.A. Theoretical study of the formation of complexes between CO2 and nitrogen heterocycles. J. Mex. Chem. Soc., 2015, 59, 36-42.
  15. Anbarasan, P.M., Kumar, P.S., Geetha, M., Govindan, R., Manimegalai, S. and Velmurugan, K. Geometries, electronic structures and electronic absorption spectra of silicon dichloride substituted phthalocyanine for dye sensitized solar cells. Rec. Res. Sci. Tech., 2010, 2, 8–16.
  16. Praveen, P.L. and Ojha, D.P. Substituent and solvent effects on UV–visible absorption spectra of liquid crystalline disubstituted biphenylcyclohexane derivatives– a computational approach. Cryst. Res. Technol., 2012, 47, 91–100.
  17. Targema, M., Obi-Egbedi, N.O. and Adeoye, M.D. Molecular structure and solvent effects on the dipole moments and polarizabilities of some aniline derivatives. Computational and Theoretical Chemistry, 2013, 1012, 47–53.
  18. Jayaprakash, A., Arjunan, V., Jose, S.P. and Mohan, S. Vibrational and electronic investigations, thermodynamic parameters, HOMO and LUMO analysis on crotonaldehyde by ab initio and DFT methods. Spectrochimica Acta Part A, 20100, 83, 411– 419.
  19. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B. G., Petersson, A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, Toyota, M. K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, Rendell, K. A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas,O., Foresman, J.B., Ortiz, J.V., Cioslowski, J. and Fox, D.J. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009.
  20. Islam, S.M., Huelin, S.D., Dawe, M. and Poirier, R.A. Comparison of the standard 6-31G and binning-curtiss basis sets for third row elements. J. Chem. Theory. Comput., 2008, 4, 86-100.
  21. Llano, J. and Eriksson, L.A. Mechanism of hydroxyl radical addition to imidazole and subsequent water elimination. J. Phys. Chem. B, 1999, 103, 5598-5607.
  22. Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98, 5648-5652.
  23. Lee, C., Yang, W. and Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37, 785-789.
  24. Stephens, P.J., Devlin, F.J., Chabalowski, C.F. and Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem., 1994, 98, 11623-11627.
  25. Cramer, C.J. Essential of computational chemistry. Second edition, Wiley, England, 2004.
  26. Marenich, A.V., Cramer, C.J. and Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B, 2009, 113, 6378–6396.
  27. Suhasini, M., Sailatha, E., Gunasekaran, S. and Ramkuma, G.R. Vibrational and electronic investigations, thermodynamic parameters, HOMO and LUMO analysis on Lornoxicam by Density Functional Theory. J. Molecular Structure, 2015, 1100, 116–128.
  28. Govindarajan, M., Karabacak, M., Periandy, S. and Xavier, S. Vibrational spectroscopic studies, NLO, HOMO–LUMO and electronic structure calculations of α,α,α-trichlorotoluene using HF and DFT. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 2012, 94, 53–64.
  29. Munoz-Caro, C., Niño, A., Senent, M.L., Leal, J.M. and Ibeas, S. Modeling of protonation processes in acetohydroxamic acid. J. Org. Chem., 2000, 65, 405–410.
  30. Santamaria, R., Cocho, G., Corona, L. and González, E. Molecular electrostatic potentials and Mulliken charge populations of DNA mini-sequences. Chemical Physics, 1998, 227, 317–329.
  31. Kleinman, D.A. Nonlinear Dielectric Polarization in Optical Media. Phys. Rev., 1962, 126, 1977.
  32. Shunmugam, R. and Sathyanarayana, D. Raman and polarized infrared spectra of pyridine-2-thione. Spectrochim.Acta A, 1984, 40, 757-761.
  33. Parr, R.G., Donnelly, R.A., Levy, M. and Palke, W.E. Electronegativity: The density functional viewpoint. J. Chem. Phys., 1978, 68, 3801–3807.
  34. Parr, R.G. and Pearson, R.G. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc., 1983, 105, 7512–7516.
  35. Parr, R.G. and Chattraj, P.K. Principle of maximum hardness. J. Am. Chem. Soc., 1991, 113, 1854–1855.
  36. Parr, R.G., Szentpály, L.V. and Liu, S. Electrophilicity index. J. Am. Chem. Soc., 1999, 121, 1922–1924.
  37. Chattaraj, P.K., Maiti, B. and Sarkar, U. Philicity: A unified treatment of chemical reactivity and selectivity. J. Phys. Chem. A., 2003, 107, 4973–4975.
  38. Parthasarathi, R., Padmanabhan, J., Subramanian, V., Sarkar, U., Maiti, B. and Chattaraj, P. Toxicity analysis of benzidine through chemical reactivity and selectivity profiles: A DFT Approach. Int. Electron. J. Mol. Des., 2003, 2, 798–813.
  39. Parthasarathi, R., Padmanabhan, J., Subramanian, V., Sarkar, U., Maiti, B. and Chattaraj, P. Intermolecular reactivity through the generalized philicity concept. Chem. Phys. Lett., 2004, 394, 225–230.
  40. Parthasarathi, R., Padmanabhan, J., Subramanian, V., Sarkar, U., Maiti, B. and Chattaraj, P. Toxicity analysis of 33'44'5-pentachloro biphenyl through chemical reactivity and selectivity profiles. Curr. Sci., 2004