A Female Child with Skin Lesions and Seizures
Case report of Incontinentia Pigmenti

Sana Al-Zuhaibi,¹ Anuradha Ganesh,¹ Ahmed Al-Waili,³ Faisal Al-Azri,⁴ Hashim Javad,² *Amna Al-Futaisi ²

Case Report

This 6 month old girl was born by spontaneous vaginal delivery to healthy non-consanguineous parents with two normal sons. She was referred to Sultan Qaboos University Hospital (SQUH), Oman, from a peripheral hospital for evaluation of abnormal skin lesions and seizures.

She was reported to have had hyper/hypopigmented skin lesions all over her body except the face since she was 6 days old. The skin lesions were noted to be of linear pattern over the upper and lower limbs and of a whorled pattern over the anterior and posterior chest wall. The mother denied the presence of any skin lesion at birth. Her examination showed evidence of hypotonia and

neonatal seizures and displayed hypopigmented/hypopigmented skin lesions. In addition, this child had characteristic ophthalmologic findings.

Keywords: Incontinentia Pigmenti (IP); Seizures; Ophthalmic; Hypomelanosis of Ito; Neurologic diseases; Case report; Oman.
mild developmental delay with microcephaly where her head circumference was significantly below the third percentile for age. Her weight was below the third percentile, but her height was normal for age. Her tone was mildly decreased with normal reflexes and positive Babinski reflex. She had a normal visual following, but was not able to respond to sound clinically. Other systemic examinations were normal.

The child developed clonic seizures at the age of 3.5 months and was commenced on oral phenobarbitone with good seizure control. The computed tomography (CT) scan of the brain (performed at a peripheral hospital) showed atrophy of the frontal horns with corpus callosum agenesis. A chromosomal study showed a normal female karyotype.

At SQUH, a magnetic resonance imaging (MRI) of the brain showed hypoplasia of the corpus callosum and hypomyelination with periventricular white matter hyperintense signal abnormalities [Figures 1a and 1b]. Electrophysiological testing showed positive visual evoked potential (VEP) responses using a flash stimulation, but negative responses for brain stem auditory evoked potentials (BAEP).

An ophthalmologic evaluation was performed at the age of 5 months. The child was able to follow and fixate with both eyes. There was no obvious nystagmus, ocular deviation or ptosis. Further examination under anaesthesia revealed bilateral inferior superficial epithelial corneal erosions; there were no stromal infiltrates or any increase in corneal thickness. The corneal size was normal for age in both eyes. She had a bilateral mild form of persistent pupillary membrane. She had a normal red reflex and normal reacting pupils with no evidence of any relative afferent defect. The intraocular pressure was 24mmHg in both eyes. No major refractive error was noted. A dilated fundus examination showed a large optic disc cup (disc cup ratio of 0.8 in both eyes). There were diffuse non-specific retinal pigment epithelial changes. The peripheral retinal examination revealed areas of fibrovascular proliferation with no evidence of retinal traction or detachment [Figures 2a and 2b]. The child was started on latanoprost 0.05% eye drops q.h.s. in both eyes with regular follow-ups at the eye clinic.

Histological studies of the skin lesions and genetic studies were scheduled; unfortunately, the child died from status epilepticus at a peripheral hospital before these studies could be undertaken.

Discussion

IP is characterized by abnormalities of the tissues and organs embryologically derived from ectoderm and neuroectoderm. The diagnosis of *IP* is made on
clinical grounds aided by histological confirmation. The skin lesions
may follow the Blaschko lines and the initial appearance of skin lesions
can be seen immediately after birth or early during the neonatal
period. Timely recognition of IP by pediatricians
and dermatologists is therefore crucial. IP overlaps
with hypomelanosis of Ito, which is a syndrome with hypopigmented whorls of the skin along the
Blaschko lines, especially when it presents at the stage of
skin hypopigmentation. Chromosomal mosaicism is believed to be the reason that hypomelanosis
of Ito is so varied in phenotype. Certain genes, namely, those on 9q33-qter, 15q11-q13, and Xp11,
have been implicated in hypomelanosis of Ito; however, no consensus exists about the identity of
the hypomelanosis of Ito gene.5, 6

In around 40-50% of IP cases, there may be
neurological problems such as seizures, spasticity,
or mental retardation.1 Seizure can be the first
manifestation of the disease.2 Abnormal tooth
eruption, malformed tooth crowns, and patchy
alopecia are commonly seen. Retinal dysplasia can
sometimes lead to visual problems.

The diagnosis of IP is also aided by family
history and a history of miscarriages of the male
gender as the disease is prenatally lethal in males.
The disease is caused by a genomic rearrangement
of the gene for NEMO, or nuclear factor kappa B
essential modulator (IKBKG-IKK gamma). The
defect in the X chromosome is proximal to the
gene for factor VIII at Xq28.7, 8 Although this child
was the first affected in her family with two normal
male siblings and no previous miscarriages in the
family, she had hypopigmented/hyperpigmented
lesions suggestive of the disease. Initially, the
diagnosis was not entertained, despite the skin
manifestations, until her presentation with partial
seizures. The possibility of hypomelanosis of Ito
diagnosis was also kept in mind though further
evidence of neurological involvement and the eye
manifestations were suggestive of IP.

The skin lesions in IP manifest in stages that
evolve sequentially.7 The onset and duration of each
stage vary among individuals; not all individuals
experience all four stages.1 Typically four
dermatological stages are seen: 1) the bullous stage;
early blistering with eosinophilia; 2) the verrucous
stage: eruption of hyperkeratotic lesions; 3) the
hyperpigmentation stage: hyperpigmentation along
the lines of Blaschko and, finally, 4) the atretic stage:
dermal scarring. In the vast majority of cases, the
onset of skin changes is before 6 weeks of age.1 Our
patient had the third stage which was not preceded by
the first or second stages. The differential diagnosis
of patients presenting with stage 3 and 4 skin lesions
includes: hypomelanosis of Ito; IP achromians;
focal dermal hypoplasia syndrome (Goltz syndrome) and
X-linked dominant chondrodysplasia punctata.

In IP, variable clinical expressions of CNS
involvement are seen. They include epilepsy, mental
retardation, hemiparesis, spasticity, microcephaly,
and cerebellar ataxia.3 The pathogenesis of the CNS
lesion in IP remains unclear.9,10,11 Recent brain-
imaging techniques, such as MRI and magnetic
resonance angiogram (MRA), have provided a better
understanding of the nature of the CNS pathology.
These imaging studies have demonstrated scattered
cortical neuronal and white-matter necrosis,
hypoplasia of the corpus callosum, periventricular white-matter cystic lesions, neuronal heterotopia, and cerebral atrophy.12, 13

Our patient had evidence of hypoplasia of the corpus callosum and decreased myelination of the white matter and, clinically, both seizures and developmental delay. The presence of CNS involvement, such as seizures, in the neonatal period is a poor prognostic sign.4, 6, 7

Ocular abnormalities occur in 35\% or more of patients and 19\% are at risk of severe visual loss in one or both eyes.14,15 A wide range of ophthalmologic findings are seen in patients with \textit{IP}.7 The commonest reported are strabismus in 18.2\% and a retrolental mass or retinal pseudoglioma in 15.4\%.

There are previous reported cases in literature of multiple corneal abnormalities including megalocornea, corneal oedema, band keratopathy, bullus keratopathy, variable corneal epithelial and stromal changes and iridocorneal attachments.10 The corneal findings in this child were superficial punctate epithelial erosion and features suggestive of an inflammatory noninfectious process.

The posterior segment findings may include multiple retinovascular abnormalities (such as retinal vascular tortuosity, macular capillary dropout, peripheral arteriovenous shunts, retinal neovascularisation, and vitreous haemorrhage). Subsequently, preretinal fibrosis, pseudoglioma and traction retinal detachment can result.14 This child had findings suggestive of what looked like pseudogliomas in both eyes [Figures 2a and 2b] and peripheral fibrovascular lesions OU with no evidence of retinal traction.

Holstrom proposed a scheme for following patients with \textit{IP} and eye manifestations. They recommended that eyes should be examined soon after birth, and then at least monthly for three to four months, at three-month intervals for one year, and twice yearly up to three years. They also recommended that the frequency of examinations should be increased in children with retinal disease. If, at three years of age, no abnormalities, refractive errors or strabismus are found, they state that the follow-up can cease.16

During the ophthalmic follow-up, visual functions should be assessed by both clinical and electrophysiological measures including VEP and electroretinography (ERG).16,17 Any significant refractive errors should be corrected and amblyopia therapy as well as strabismus treatment should be provided.16,19 Cryotherapy or laser photocoagulation should be applied for active peripheral retinal abnormalities and tractional retinal detachment should be treated surgically.

Conclusion

In summary, \textit{IP} or Bloch-Sulzberger syndrome is a rare X-linked dominant syndrome. It has multisystemic involvement that includes the skin, central nervous system and eyes. In neurocutaneous syndromes, multidisciplinary care with periodic consultations with a paediatric ophthalmologist, neurologist and other specialists depending on the associated anomalies are essential. The differentiation between hypomelanosis of Ito and IP can be difficult as the two disorders overlap considerably. Clinicians need to be aware of the variable manifestations of this disease for a timely and multidisciplinary management of such patients.

Acknowledgments

Thanks are due to the parents of this child who consented to publication of this report and the photos in a medical journal.

References

