Non-Invasive Haemoglobin Estimation in Patients with Thalassaemia Major

Murtadha K. Al Khabori,† Arwa Z. Al-Riyami,† Khalil Al-Farsi,† Mohammed Al-Huneini,† Abdulhakeem Al-Hashim,‡ Nasser Al-Kemyani,† Issa Al-Qarshoubi,† Hammam Khan,† Khalfan Al-Amrani,† Shahina Daar†

Department of *Haematology, Anaesthesia & Intensive Care and †Emergency Medicine, Sultan Qaboos University Hospital; ‡Department of Haematology, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman

Abstract: This study aimed to validate pulse CO-oximetry-based haemoglobin (Hb) estimation in children and adults with thalassaemia major (TM) and to determine the impact of different baseline variables on the accuracy of the estimation. Methods: This observational study was conducted over a five-week period from March to April 2012. A total of 108 patients with TM attending the daycare thalassaemia centre of a tertiary care hospital in Muscat, Oman, were enrolled. Spot (Sp) Hb measurements were estimated using a Pronto-7® pulse CO-oximetry device (Masimo Corp., Irvine, California, USA). These were compared to venous samples of Hb using the CELL-DYN Sapphire Hematology Analyzer (Abbott Diagnostics, Abbott Park, Illinois, USA) to determine the reference (Ref) Hb levels. A multivariable linear regression model was used to assess the impact of baseline variables such as age, gender, weight, height, Ref Hb and blood pressure on the Hb estimations. Results: Of the 108 enrolled patients, there were 54 males and 54 females with a mean age of 21.6 years (standard deviation [SD] = 7.3 years; range: 2.5–38 years). The mean Ref Hb and Sp Hb were 9.4 g/dL (SD = 0.9 g/dL; range: 7.5–12.3 g/dL) and 11.1 g/dL (SD = 1.2 g/dL; range: 7.5–14.7 g/dL), respectively. The coefficient of determination (R²) was 21% with a mean difference of 1.7 g/dL (SD = 1.1 g/dL; range: −0.9–4.3 g/dL). In the multivariable model, the Ref Hb level (P = 0.001) was the only statistically significant predictor. Conclusion: The Pronto-7® pulse CO-oximetry device was found to overestimate Hb levels in patients with TM and therefore cannot be recommended. Further larger studies are needed to confirm these results.

Keywords: beta Thalassaemia; Validation Studies; Hemoglobin; Pulse Oximetry.

This study found that the investigated CO-oximetry device (Pronto-7®, Pulse, Masimo Corp., Irvine, California, USA) overestimates haemoglobin levels in patients with thalassaemia major (TM).
Application to Patient Care

The results of this study indicate that this pulse CO-oximetry device should not be used for the purpose of haemoglobin estimation in TM patients as it was found to overestimate haemoglobin levels among this patient population.

Methods

This observational study involved 108 patients with TM from the thalassaemia daycare unit of the Sultan Qaboos University Hospital (SQUH) in Muscat, Oman. The study was conducted over a five-week period from March to April 2012 and included participants of all ages and both genders. The diagnosis of TM was based on the absence of Hb A via high-performance liquid chromatography in patients requiring regular blood transfusions.

Two spot Hb measurements (Sp1 Hb and Sp2 Hb) were taken 10 minutes apart using small, medium and large Rainbow® reusable spot check sensors (Masimo Corp.), for patients weighing 10 to 50 kg. These were connected to the Pronto-7® pulse CO-oximetry device according to the manufacturer’s recommendations. In addition, a venous sample was taken in order to make a laboratory-based Hb estimation and determine the patients’ reference (Ref) Hb levels. For this purpose, the CELL-DYN Sapphire Hematology Analyzer (Abbott Laboratories, Abbott Park, Illinois, USA), was used, as this is considered the gold standard for accurately recording Hb levels.

Continuous variables were presented as means with standard deviations and ranges, while categorical variables were shown as frequencies and percentages. Scatter plots were used to compare the continuous variables (Ref Hb versus Sp1 Hb and Sp1 Hb versus Sp2 Hb). A linear regression model was used to estimate the intercept, the beta coefficients and the coefficient of determination (R²). The R² value was used as an estimate of goodness-of-fit and the two methods of Hb estimation were compared using a Bland-Altman plot. Multivariable linear regression was used to assess the impact of selected baseline characteristics (age, gender, weight, height, Ref Hb and blood pressure) on the difference between the Sp1 Hb and Ref Hb levels. An alpha error threshold of 0.05 was considered for statistical significance. The statistical software Stata, Version 11 (StataCorp LP, College Station, Texas, USA) was used for all descriptive statistics, graphs and analytical tests.

The study protocol was reviewed and approved by the Medical Research & Ethics Committee at the College of Medicine & Health Sciences, Sultan Qaboos University (MREC#506). All patients gave informed consent after being briefed by a trained medical officer or nurse.

Results

A total of 108 patients (54 male and 54 female) with TM were enrolled in this study, with a mean age of 21.6 ± 7.3 years (range: 2.5–38 years). Only 10% of
The patients were aged 11 years or younger. The mean Ref Hb, Sp1 Hb and Sp2 Hb levels were 9.4 ± 0.9 g/dL (range: 7.5–12.3 g/dL), 11.1 ± 1.2 g/dL (range: 7.5–14.7 g/dL) and 10.8 ± 1.2 g/dL (range: 7.5–14.2 g/dL), respectively. The mean weight and height of the participants were 52.4 ± 16.4 kg (range: 12.8–100.7 kg) and 154 ± 15 cm (range: 88–184 cm), respectively. The mean blood pressure of the patients was 111/66 ± 13/9 mmHg (range: 80/47–138/100 mmHg) [Table 1].

The scatter plot of Sp1 Hb versus Ref Hb is shown in Figure 1, with an R² of 21%. The mean difference between Sp1 Hb and Ref Hb was 1.7 ± 1.1 g/dL (range: −0.9–4.3 g/dL). A Bland-Altman plot of the differences in estimation between Sp Hb and Ref Hb levels indicated that most of the variations were greater than 1 g/dL [Figure 2], indicating that the Pronto-7® pulse CO-oximetry device overestimated the patients’ Hb levels. The upper and lower limits of agreement were 3.8 and −0.4 g/dL, respectively. In the multivariable model, Ref Hb level was the only statistically significant predictor of the difference (P = 0.001). The R² of the two CO-oximetry Hb measurements, which were taken 10 minutes apart, was 46% [Figure 3].

Table 1: Baseline characteristics among patients with thalassaemia major (N = 108)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years</td>
<td>21.6 ± 7.3</td>
</tr>
<tr>
<td>Male: female ratio*</td>
<td>54:54</td>
</tr>
<tr>
<td>Ref Hb in g/dL</td>
<td>9.4 ± 0.9</td>
</tr>
<tr>
<td>Spot 1 Hb in g/dL</td>
<td>11.1 ± 1.2</td>
</tr>
<tr>
<td>Spot 2 Hb in g/dL</td>
<td>10.8 ± 1.2</td>
</tr>
<tr>
<td>Weight in kg</td>
<td>52.4 ± 16.4</td>
</tr>
<tr>
<td>Height in cm</td>
<td>154 ± 15</td>
</tr>
<tr>
<td>BP in mmHg</td>
<td>111/66 ± 13/9</td>
</tr>
</tbody>
</table>

Ref = reference; Hb = haemoglobin; BP = blood pressure.

*This value is not expressed as mean ± standard deviation.

Discussion

The Pronto-7® pulse CO-oximetry device was found to overestimate the Hb level in TM patients by a mean of 1.7 g/dL, with clinically unacceptable limits of agreement. The use of this device in estimating Hb levels, therefore, cannot be recommended for this group of patients. The only significant predictor for this discrepancy in estimation was the Ref Hb level, which was assessed using a gold standard method. The reproducibility of the estimation remained high when...
the test was repeated after a short interval.

A spectrum bias is a common problem in diagnostic studies, leading to a false increase in the sensitivity and specificity of new diagnostic tests. Previous studies have demonstrated the validity of the Pronto-7 pulse CO-oximetry device for use in normal blood donors and in patients with SCD. In contrast, the current study observed that the same device overestimates Hb levels in TM patients by a clinically significant margin. The difference in the validation results may potentially be due to the lower Hb levels commonly seen in patients with TM; these lower HB levels are not frequently observed among patients with SCD or in normal blood donors. The use of this device is therefore not recommended in patients with low Hb levels, for instance among those suspected of being anaemic.

Another reason why different validation results were observed in the current study may be due to variations within the chosen patient populations. The present study included paediatric patients, whereas the previous studies investigating blood donors and patients with SCD did not. In the study investigating blood donors, differences in height may have been partially responsible for the different estimates. This is because the three different sizes of sensor may not have been optimal in terms of fit for certain patients with different heights. In the two previous studies, as well as the current study, the same sized sensors were used. However, if the fit of the sensor was not optimal on all patients, this could have affected the accuracy of the estimates produced, leading to a larger difference between estimates. In the current study, the age and height of the participants were not found to be statistically significant enough to explain the difference in estimates. It is possible that modelling the interaction between patients’ heights or ages and differing Hb estimates may shed further light on the issue; this was not carried out in the present study due to the complexity of such modelling and the relatively small sample size.

Although different conclusions were drawn with regards to the validity of the pulse CO-oximetry device, it is interesting to note that similar findings were noted between the current study and the previous studies in the numerical estimates of the studied subjects, when comparing the R^2. In validation studies, it is important that any conclusions drawn should not be based on a single parameter, but instead take into consideration all available parameters, the limitations of each and the fact that these complement each other. In the current study, the Bland-Altman plot showed the distribution of the difference between estimations and revealed the bias of overestimation in the Sp Hb levels compared with the Ref Hb levels. The standard methodology of the present study has many merits and is frequently utilised in diagnostic studies.

In light of its limitations, the results of this study should be interpreted with caution. There was a limited supply of sensor sizes, although every attempt was made among individual patients to choose the finger with the best physical fit for the sensor used. The fact that only three sizes of sensors were available for use (small, medium or large), without taking into consideration the need for other sizes among the patients, likely biased the difference between estimations to be larger than the true value. Moreover, the inclusion of both children and adults in one study may have increased the variance and decreased the power, making it difficult to truly show the validity of the device. High levels of fetal Hb in children may have interfered with the measurement accuracy of the device. Additionally, as the majority of the patients in the study were adults, the conclusions drawn from this study cannot be generalised to paediatric patients, although the authors would still caution the use of this device in children. Paediatric patients were included in this study so as to assess this device among the age group that may potentially benefit the most from its use. Furthermore, it should be noted that previous research has indicated that the Pronto-7’s performance was satisfactory when used as a continuous monitor, rather than a single spot measurement as in the present study. Finally, the study was also limited by its relatively small sample size, which decreased the power to detect significant factors to predict the discrepancy in Hb estimates.

The study has a number of strengths despite the above limitations. Foremost, this is the first and only study to specifically address the population of TM patients. This study included patients with Hb levels as low as 7.5 g/dL, although patients with TM can have levels lower than this. In addition, the biased estimate found in this evaluation of the Pronto-7 device calls for caution in the interpretation of diagnostic studies with potential spectrum bias.

Conclusion

The results of this study demonstrate that the Pronto-7 pulse CO-oximetry device overestimates the haemoglobin level in patients with TM, and therefore cannot be recommended for use with this group. The authors further caution the use of this device in children and in patients suspected of being anaemic. Studies with larger patient populations are needed to confirm these results.
CONFLICT OF INTEREST
The Pronto-77® pulse CO-oximetry device and the reusable sensors were provided free of charge by Muscat Pharmacy, Oman. Muscat Pharmacy had no access to the data and had no input in the analysis or the writing of the manuscript.

ACKNOWLEDGEMENTS
The authors of this study would like to thank Muscat Pharmacy for providing the pulse CO-oximetry device and the reusable sensors. The authors would also like to thank the nurses in the SQUH daycare thalassaemia unit for their great contribution and help during this study.

This study was presented in abstract form in December 2012 at the 54th Annual Meeting of the American Society of Hematology in Atlanta, Georgia, USA. The abstract was previously published in Blood Journal in November 2012 (Vol. 120, Iss. 21, Abstract 5179).

References