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Alzheimer’s disease (AD) is a chronic 
neurodegenerative disease considered to 
be the most common cause of dementia.1 

AD is characterised by visuospatial dysgnosia and 
memory, language, emotional, personality and 
complex cognition impairment. The primary sign 
of AD is the gradual deterioration in an individual’s 
ability to remember recent events, likely due to the 
perturbation of neuronal function in the temporal 
lobes.1,2 More than 44 million people worldwide were 
estimated to be suffering from AD in 2014 and this 
number is projected to double by 2030.3 There is a 
direct correlation between the incidence of dementia 
and ageing, with the highest rates of AD seen in the 
seventh and eighth decades of life. In addition, it is 
proposed that the incidence of AD may dramatically 
rise every five years after the age of 65 years.4

The most common neuropathological hallmarks 
of AD are deposition of amyloid β (Aβ) in a 
compact structure outside the neurons, intracellular 
neurofibrillary tangles (NFTs) and inflammatory 
processes. Aβ is derived from the amyloid precursor 
protein (APP) by processing enzymes (α-, β- and 
γ-secretases). These altered proteins are deposited as 
extracellular plaques called senile plaques.5–7 Intracellular 
NFTs, which are composed of microtubule-associated 
protein tau, are another pathological aspect of AD-
affected brains. Following chemical changes such as 
hyperphosphorylation, these aggregates often pair 
with other threads and accumulate inside the neurons, 
consequently causing microtubule destabilisation.5,8,9 

Histopathological evidence from patients with AD 
shows cerebral atrophy, deposition of Aβ in plaques 
and neuritic changes, such as neuritic plaques and 
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abstract: Alzheimer’s disease (AD), a neurodegenerative disorder associated with advanced age, is the most 
common cause of dementia globally. AD is characterised by cognitive dysfunction, deposition of amyloid plaques, 
neurofibrillary tangles and neuro-inflammation. Inflammation of the brain is a key pathological hallmark of AD. 
Thus, clinical and immunopathological evidence of AD could be potentially supported by inflammatory mediators, 
including cytokines, chemokines, the complement system, acute phase proteins and oxidative mediators. In 
particular, oxidative mediators may actively contribute to the progression of AD and on-going inflammation in 
the brain. This review provides an overview of the functions and activities of inflammatory mediators in AD. 
An improved understanding of inflammatory processes and their role in AD is needed to improve therapeutic 
research aims in the field of AD and similar diseases.
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الملخ�ص: داء الزهايمر هو انتكا�سة ع�صبية تحدث مع التقدم في العمر وهي �أكثر �أ�سباب خرف ال�شيخوخة �شيوعا. ويتميز المر�ض بحدوث 
خلل إدراكي, وتر�سب لويحات اميلويدية, وت�شابك الألياف الع�صبية مع �ألتهاب ع�صبي. وال�سمة المميزة لداء الزهايمر هي حدوث إلتهاب 
المخ. وبالتالي ف�إن الأدلة ال�سريرية والمناعية المر�ضية قد يتم دعمها بالو�سائط الالتهابية, مثل ال�سيتوكينات والكيموكينات, ونظام 
الكومبليمنت )المتممة(, وعلامات الالتهاب الحاد, والو�سائط الم�ؤك�سدة. وعلى وجه الخ�صو�ص ف�إن الو�سائط الم�ؤك�سدة قد يكون لها دور 
الزهايمر والتهاب المخ الجاري. وهذا الا�ستعرا�ض يقدم لمحة عامة على وظائف و�أن�شطة و�سائط الالتهاب في داء  ن�شط في تفاقم داء 
الزهايمر. إن تح�سن فهمنا لدور الألتهاب في حدوث داء الزهايمر �سي�ؤدي إلي تقدم البحث العلمي في إمكانية علاج هذا المر�ض وبالتالي 

�أمرا�ض �أخرى م�شابهة.
مفتاح الكلمات: داء الزهايمر؛ و�سائط الألتهاب؛ ال�سيتوكينات؛ الكيموكينات؛ بروتينات نظام الكومبليمنت؛ علامات الالتهاب الحاد.
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NFTs. Although the brains of people diagnosed with 
AD have increased Aβ deposition, these findings are 
not specific to AD alone and may be found in elderly 
people not suffering from dementia.10,11 Although 
the amyloid cascade theory is the most widely 
accepted explanation for the aetiology of AD, other 
theories have also been described to illustrate the 
role of inflammation in actively contributing to the 
progression of the disease.12 It is often assumed that 
the accumulation of Aβ in the brain results in the 
development of systemic inflammatory reactions by 
prompting immune responses.13,14 This article reviews 
the major role of inflammatory mediators in the 
immunopathogenesis of AD.

Immunopathology of 
Alzheimer’s Disease 

Cells of the adaptive immune system can migrate 
to the brain through the blood-brain barrier (BBB), 
which is structurally different in people with AD in 
comparison to healthy individuals.15 Based on electron 
microscope observation, most Aβ plaques in the brains 
of AD patients are associated with activated microglial 
cells (central nervous system [CNS]-resident 
macrophages). These cells seem to be responsible 
for on-going neuro-inflammatory processes in AD 
through the release of cytokines, chemokines and 
neurotoxins. Moreover, microglial cells can produce 
several pro- and anti-inflammatory cytokines via 
direct inter-action with infiltrated T lymphocytes.15 
Interestingly, Bromley et al. reported that some 
chemokines are able to restrain immunological synapse 
formation and T cell activation.16 They indicated that 
the immunosuppressive effect of chemokines occurred 

with C-X-C motif receptor (CXCR) 3 and C-C motif 
receptor (CCR) 7 chemokines, but not with CCR2, 4 
and 5 or CXCR4 chemokines.16 

Inflammation commences when innate immune 
mediators detect damaged tissue or other molecules 
on the surface of cells. Chemokines and other 
inflammatory mediators are responsible for the 
recruitment of immune cells to the damaged area.17,18 

Various inflammatory processes in AD contribute to 
the pathology of the disease [Table 1]. Degenerated 
cells and tissues, as well as an accumulation of 
abnormal insoluble materials, are the most common 
stimuli for inflammation. Likewise, in the brain of AD 
patients, damaged neurons and neurites, along with 
NFT and insoluble Aβ peptide deposits, can act as 
potent triggers of inflammation.19

Accordingly, inflammation may contribute to 
the pathogenesis of AD by two mechanisms. The 
first is a preliminary innate immune response to the 
alterations in the AD brain; inflammation is involved 
in the recruitment of immune cells to the site of 
injury as a result of the initial signalling of cytokines 
and chemokines and complement system activation. 
The second mechanism involves a minor amount of 
on-going inflammation in the brain, which can result 
in the pathogenesis of AD. This inflammation can be 
considered a sign of an impaired adaptive immune 
response and leads to chronic inflammation.19,20 

glial cells as a trigger of 
immune responses

Microglial cells have the ability to induce neuronal 
damage through the following processes: (1) phago-
cytosis; (2) the release of cytokines/chemokines/
prostaglandins and reactive oxygen species (ROS); 
and (3) the expression of innate and adaptive immune 
function molecules such as Toll-like receptors (TLRs), 
immunoglobulin fragment crystallisable gamma 
receptors, major histocompatibility complex class 
II (MHC II) molecules, complement receptors and 
purinergic receptors (e.g. P2X purinoceptor 7).21–23 
The activation of microglia with Aβ can occur 
either via the internalisation of soluble Aβ through 
phagocytosis while fibrillary Aβ binds to TLR2 and 
TLR4 or through the activation of a mitogen-activated 
protein kinase pathway, stimulating pro-inflammatory 
gene expression leading to the secretion of cytokines 
and chemokines.24 Moreover, Aβ may be presented by 
activated microglial cells to T lymphocytes, eventually 
causing Aβ-specific T cells to enter the brain [Figure 1]. 
It should be noted that while Aβ-reactive T cells are 
present in healthy individuals, T cells are vital for 
protecting against AD pathogenesis by cooperating 
with and modulating the innate immune system.25 

Table 1: Inflammatory components contributing to the 
pathology of Alzheimer’s disease

Inflammatory 
component

Examples

CNS cells Microglia, astrocytes and neurons

Cytokines TNF-α, IL-1β, IL-6, IFN-γ and 
IL-18

Chemokines MCP-1, CXCL8, CXCL12, 
CX3CL1 and MIP

Complement system Classical and alternative pathways

Acute phase proteins CRP and SAA

Oxidative mediators ROS, RNS, NO, O2- and ONOO-

CNS = central nervous system; TNF-α = tumour necrosis factor-α; IL = 
interleukin; IFN-γ = interferon-γ; MCP-1 = monocyte chemoattractant 
protein-1; CXCL = C-X-C motif ligand; CX3CL1= C-X3-C motif 
ligand 1; MIP = macrophage inflammatory protein; CRP = C-reactive 
protein; SAA = serum amyloid A; ROS = reactive oxygen species; RNS 
= reactive nitrogen species; NO = nitric oxide; O2- = superoxide anion 
radical; ONOO- = peroxynitrite anions.
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However, T cells are more susceptible to ageing 
than innate immune components. Fulop et al. 
demonstrated that adaptive immune responses in the 
elderly were less effective in eliminating Aβ deposition 
than an innate immune response.25 Therefore, once the 
immune system is overwhelmed with Aβ deposition, 
inflammation becomes chronic and adverse, resulting 
in accelerated neurodegeneration.26

role of lymphocytes

Several studies have evaluated the function of T cells 
in AD so as to determine AD-related abnormalities 
in the immune system.27,28 Richartz-Salzburger et 
al. reported the general decline of immune function 
among patients with AD due to a decreased number 
of T and B cells.27 In addition, another study noted 
the hyporesponsiveness of T cells to certain intrinsic 
functional defects in AD patients when compared with 
control subjects.29 Some alterations, such as accelera-
ted telomere shortening, can serve as an important 
factor in the impairment of normal lymphocyte 

activity in AD patients.30 This finding was confirmed 
by Zhang et al.; their research indicated that the 
increase of telomerase activity in the lymphocytes 
of AD patients can lead to diminishing lymphocyte 
proliferation activity, consequently resulting in the loss 
of immune function.31 

As yet, the precise mechanism regarding the 
activation, migration and survival of T cells in the 
brains of AD patients is not clear. As previously 
mentioned, antigen-presenting cells with a high 
expression of MHC ІІ molecules, which either 
differentiate from microglia in the brain or are 
recruited from the blood, can present Aβ to T cells. 
In addition, interferon-γ (IFN-γ) plays a key role in 
facilitating T cell migration as well as promoting an 
immune regulatory process within the brain.32 The 
amount of IFN-γ in the brain determines its effect 
as it is adverse at high levels and beneficial at low 
levels.33 Research has demonstrated the pathogenic 
reaction of both T and B cells against Aβ as well as 
the risk of meningoencephalitis, caused by the entry of 

Figure 1: The immunological function of microglia in Alzheimer’s disease. 
Aβ = amyloid β; TLR = Toll-like receptors; CD = cluster of differentiation; RAGE = receptor for advanced glycation end-products; FcγR = fragment 
crystallisable gamma receptor; MHC II = major histocompatibility complex class II; CR = complement receptor.
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cluster of differentiation (CD) 8 cytotoxic T cells to the 
brain followed by the secretion of pro-inflammatory 
cytokines by CD4 T cells.33,34 

role of inflammatory cytokines 
and chemokines

There is growing evidence that inflammatory media-
tors in the CNS contribute to cognitive impairment 
through cytokine-mediated interactions between glial 
cells and neurons. Moreover, it has been demonstrated 
that AD is associated with the upregulation of pro-
inflammatory cytokines, which can initiate plaque 
production and enhance nerve cell degeneration.6,15 

Some of these mediators—including tumour necrosis 
factor (TNF)-α, interleukin (IL)-6, IFN-γ, inducible 
protein-10, monocyte chemoattractant protein 
(MCP)-1 and C-X-C motif ligand (CXCL) 8—increase 
in the prodromal stage of AD. Elevation of these cytokines 
occurs during the initiation of AD. This may explain 
the failure of clinical trials using anti-inflammatory 
drugs against severe AD.35 This idea is supported by 
immunohistochemistry examinations performed 
by Sokolova et al. which confirmed the increase of 
MCP-1, IL-6 and CXCL8 in AD brains and determined 
that these mediators were localised in neurons 
(IL-6, MCP-1 and CXCL8), astrocytes (IL-6 and 
MCP-1) and plaques (CXCL8 and MCP-1).36 Moreover, 
logistic linear regression modelling determined that, 
of the cytokines, MCP-1 was the most accurate for 
the prediction of AD.36 Hence, these findings support 
the importance of IL-6, MCP-1 and CXCL8 in AD 
and also show that MCP-1 may play an important 
role in the progression of chronic inflammation in 
AD. As a result of these observations, some cytokines 
(such as IL-1, -4, -6, -10, -12 and -18, IFN-γ, TNF 
and transforming growth factor [TGF]-β) have been 
proposed as AD biomarkers.6

Interleukin (IL)-1ß, IL-6 and Tumour Necrosis 
Factor-α

The elevation of IL-1β, IL-6 and TNF-α is widely 
recognised as a critical component of neuro-
inflammation and leukocyte recruitment to the 
CNS.6 This response is characterised by promoting 
deposition of Aβ in the brain and astrocytic and 
microglial activation. Moreover, IL-1β and TNF-α 
are potent stimuli for inducible nitric oxide (NO) 
synthase (NOS) expression and activity in the brain 
and NO metabolite overflow into the cerebrospinal 
fluid.5 Importantly, Belkhelfa et al. revealed recently 
that a high level of NO is associated with the rise of 
TNF-α levels in patients in the severe stages of AD.37 
In response to numerous intrinsic and extrinsic 
stimuli, TNF-α is produced by microglia, astrocytes 
and neurons in the brain. In addition, genetic and 

epidemiological findings have implicated augmented 
levels of TNF-α in the brain as a risk factor for AD.37 

TNF-α can mediate neuronal dysfunction as 
well as Aβ-induced disruption of the molecular 
mechanisms involved in memory function. Likewise, 
TNF-α can stimulate accumulation of the tau proteins 
in neurites through induction of ROS.5 In another 
recent study, Lin et al. observed a significant decrease 
of TNF-α, IL-1α, -6 and -12 in sera after vaccinating 
transgenic mice.38 Remarkably, the decrease in 
TNF-α and IL-6 levels correlated with cognitive and 
behavioural improvements in the transgenic mouse 
model of AD.38 In contrast, it has been reported that 
some inflammatory cytokines, such as IL-1β, IL-6 and 
IFN-γ, have also had beneficial and protective effects 
against AD.6,39 Overexpression of IL-1 and IL-6 
in the brain results in extensive gliosis which may 
be beneficial in the disease process by stimulating 
increased amyloid phagocytosis rather than mediating 
a neurotoxic feedback loop. 

Interleukin-18 and Interferon-γ
Several studies have highlighted a critical role 
for IL-18 in mediating neuro-inflammation and 
neurodegeneration in the brains of AD patients.40,41 

Notably, an imbalance of IL-18 and its endogenous 
inhibitor, IL-18 binding protein (IL-18BP), has 
been shown in AD, with an elevated IL-18:IL-
18BP ratio that might be involved in the disease 
immunopathogenesis.42 In the brain, IL-18 is produced 
by microglial, astrocyte and ependymal cells as well 
as by neurons of the medial habenular nucleus.43 
Through the induction of IFN-γ and expression of 
MHC ІІ molecules in microglial cells, IL-18 can 
initiate a neural-immune cell interaction which may 
play a key role in the induction of autoimmunity in the 
CNS environment.44 Moreover, IFN-γ can enhance Aβ 
deposition through β-secretase 1 expression as well 
as stimulate the upregulation of MHC II molecules 
in a subpopulation of microglia and induce auto- 
immune processes in the CNS. Importantly, signi-
ficant IFN-γ levels are only detected in mild cases of 
AD. Collectively, this suggests that NO production is 
IFN-γ-dependent in AD.37 On the other hand, IFN-γ is 
a known inhibitor of APP fragment production. IFN-γ 
can prevent amyloid deposition during inflammatory 
processes in both non-neuronal and neuronal tissues. 
Furthermore, IFN-γ has a strong suppressive effect on 
the production and metabolism of APP.5,45

Transforming Growth Factor-ß
Recent data have implicated anti-inflammatory cyto- 
kines as integral factors to the pathogenesis of AD.6 
Among them, TGF-β is emerging as a critical factor 
in regulating inflammatory responses. Three known 
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isoforms of TGF-β (TGF-β1, -β2 and -β3) are 
expressed in mammalian tissues. In AD, the expression 
of TGF-β2 is induced by toxic Aβ in both glial and 
neuronal cells; increased levels of TGF-β2 trigger the 
cell death pathway due to alterations in the morpho-
logy and number of lysosomes in neurons.46 TGF-β2 
causes lysosomal membranes to become unstable and 
leak and this effect is intensified with the accumulation 
of Aβ, as TGF-β2 rapidly targets the Aβ peptide 
in lysosomal compartments in cortical neurons, 
inducing cell death.47 As a neurotrophic factor, TGF-β1 
initiates and maintains neuronal differentiation and 
synaptic plasticity. In AD animal models, it has been 
suggested that a deficiency of TGF-β1 signalling may 
correlate with Aβ pathology and NFT formation.48

C-C Motif Ligand 2
C-C motif ligand (CCL) 2, also known as MCP-
1, plays a significant role in AD pathogenesis. 
Increased levels of CCL2 in the brain result in the 
recruitment of activated monocyte cells into the 
organ where they differentiate into macrophages and 
produce neurotoxic and inflammatory mediators.49–51 
Immunohistochemistry findings have confirmed 
this increase in CCL2 levels and have determined 
localisation of these factors in astrocytes, neurons 
and plaques via pathology.49 However, mononuclear 
phagocyte accumulation is regulated via the interaction 
of CCL2 with its receptor, CCR2; CCR2 deficiency in 
these cells therefore leads to diminished phagocyte 
cell recruitment to the brain which is associated with 
higher levels of Aβ in the brain, particularly around 
the blood vessels. This suggests that monocytes are 
initially recruited and accumulate at Aβ deposition 
sites in order to clear them and either halt or delay 
their associated neurotoxic effects. Indeed, an increase 
of mononuclear phagocyte recruitment to the brain 
delays the progression of AD in its early stages.36,49

C-C Motif Ligand 5
The role of CCL5, also known as the RANTES 
(regulates on activation, normal T cell expressed 
and secreted) protein, has been determined in 
neurodegenerative diseases such as AD and elevated 
levels of RANTES protein are commonly observed 
in the microcirculatory system of AD-affected 
brains.52 The RANTES protein, as well as several 
other chemokines in astrocytes, is upregulated as a 
response to a cytokine-mediated increase of ROS.53 
Moreover, oxidative stress upregulates RANTES 
protein expression in endothelial cells in the brain.52 
In brain injury models, elevated levels of the RANTES 
protein contributed to immune cell recruitment 
that occurred concurrently with increased rates of 
neuronal death.52,54,55

C-X-C Motif Ligand 8
CXCL8 (IL-8) is a microglia-derived chemokine that is 
produced in response to pro-inflammatory signals such 
as Aβ. CXCL8 could be important for the recruitment 
of activated microglia and neutrophils into areas of the 
damaged brain during the late stages of AD, suggesting 
a role for this chemokine in phases with prevalent 
neurodegeneration. In addition, CXCL8 is continually 
upregulated in neurons and plaques.19 

C-X-C Motif Ligand 12
The chemokine CXCL12 has been associated with 
neurogenesis and the recruitment of brain-resident 
and non-resident circulating cells to sites of lesions in 
the CNS.56 Moreover, in Tg2576 mouse models of AD, 
CXCL12 messenger ribonucleic acid (mRNA) protein 
and its receptors were downregulated, with co-existing 
cognitive deficits.57 Zhu et al. found that CXCL12 
plasma levels in patients with early AD were low and 
that CXCR4 and CXCL12 had anti-inflammatory 
properties.58 An in vitro study demonstrated that 
neurons pre-treated with CXCL12 were significantly 
protected from antibody-induced dendritic regression 
and apoptosis via protein kinase B and extracellular 
signal-regulated kinases 1/2 activation, as well as 
maintenance of A disintegrin and metalloproteinase 
17, especially with CXCL12.59

C-X3-C Motif Ligand 1
C-X3-C motif ligand (CX3CL) 1, also known as 
fractalkine, is produced and expressed constitutively 
by neurons. CX3CL1 suppresses microglial activation 
and the CX3CL1/C-X3-C motif receptor (CX3CR) 
1 complex may control neurotoxicity. Research has 
demonstrated that levels of plasma-soluble CX3CL1 
are significantly greater in patients with mild to 
moderate AD than in those with severe AD.60 These 
findings and other data suggest that CX3CL1 has a 
neuroprotective function that may potentially have 
therapeutic applications for several neurodegenerative 
diseases, including AD and Parkinson’s disease, in 
which inflammation also plays an important role.5,60 

Cho et al. identified CX3CL1/CX3CR1 signalling 
as a central microglial pathway in protecting against 
AD; this pathway was associated with the inhibition 
of aberrant microglial activation and inflammatory 
cytokine elevation.61

Macrophage Migration Inhibitory Factor
The macrophage migration inhibitory factor (MIF) is a 
pleiotropic pro-inflammatory cytokine which increa-
ses the production of other inflammatory cytokines, 
such as TNF-α, IL-6 and IFN-γ, and has a pivotal 
regulatory role in the pathogenesis of numerous 
autoimmune and inflammatory disorders.62,63 Cellular 
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sources for MIF are neurons and activated microglia; 
the clustering of microglia at amyloid deposition sites 
implies that this cell migrates to these locations and 
undergoes attempted removal of the amyloid protein.64 
In their study, Oyama et al. found that MIF was able 
to bind Aβ in AD-affected brains and that Aβ toxicity 
could thus be accredited directly to the increased 
expression of MIF.65 However, microglial cells are 
seemingly unable to clear Aβ due to its insoluble nature 
and the fact that it is present in substantial quantities. 
Therefore, Aβ deposits are not phagocytised and 
remain present while microglial cells continue to be 
attracted to the sites for long periods of time.66

Macrophage Inflammatory Protein-1α
Macrophage inflammatory protein (MIP)-1α is a 
chemokine present in humans which has a significant 
part in the pathogenesis of AD mainly via its expre- 
ssion by astrocytes, microglia, neurons, infiltrated 
monocytes and T cells.67 It has been demonstrated 
that higher MIP-1α expression in the peripheral T 
lymphocytes of AD patients results in CCR5 expression, 
a potential MIP-1α receptor on microvascular endothe-
lial cells in the human brain, which subsequently leads to 
increased T cell transendothelial migration from the 
blood to the brain.68 Li et al. found that serum MIP-
1α levels were significantly higher in patients with 
the TA6/6 genotype of the apolipoprotein E gene and 
that this genotype seems to be a genetic risk factor for 
AD.69 According to Passos et al., the activation of the 
MIP-1α/CCR5 signalling pathway was one of the initial 
events following Aβ1–40 injections in AD mouse 
models; this seems to be a critical signal for activated 
glial cell accumulation, inflammatory responses, 
synaptic dysfunction and cognitive failure.70

contribution of the complement 
system

In the AD-affected brain, levels of complement 
mRNAs and their protein products have been found 
to be significantly higher than those in the livers of 
healthy individuals; moreover, neurons of AD patients 
have been found to express complement proteins of 
the classical pathway to an increased degree in 
comparison to neurons in brains which were not 
affected by AD.9 At the very first stages of amyloid 
deposition in AD, integral complement protein 
components of amyloid plaques and cerebral 
vascular amyloid material can be found; their 
activation occurs simultaneously with the clinical 
expression of AD.71 Aβ can activate the classic and 
alternative complement pathways in areas of the brain 
associated with AD pathology, even in the absence of 
antibodies.72 Moreover, it has been demonstrated that 
tau protein is an antibody-independent activator of 

the classical complement pathway.9 This activation of 
the complement cascade not only causes substantial 
damage to the neurons, but can also lead to increased 
phosphorylation of tau proteins and formation of 
NFTs, resulting in elevated levels of membrane attack 
complex in AD brains.9 Nevertheless, the complement 
cascade has both positive and negative aspects; 
although it is essential to maintaining the health of the 
brain, it may have adverse effects when unregulated 
and often exacerbates AD. 

The complement protein C1q is induced in the 
brain in response to AD and blocks fibrillary Aβ 
neurotoxicity in vitro.73 C1q binds to β-sheet fibrillary 
Aβ plaques and, when associated with C1r and C1s as 
in the C1 complex, activates the complement cascade 
that can have detrimental inflammatory consequences 
via production of the chemotactic factor C5a and 
following recruitment and activation of microglial 
cells to the site of injury. It also has a protective effect 
by increasing the clearance of Aβ through C1q- and 
C3-dependent opsonisation.74 Benoit et al. showed 
that C1q protected both immature and mature 
primary neurons against fibrillary Aβ toxicity and 
prevented oligomeric Aβ toxicity.75 In addition, gene 
expression analysis revealed that C1q-induced low-
density lipoprotein receptor-related protein 1B and 
G protein-coupled receptor 6 expressed early in AD 
mouse models were vital for C1q-mediated protection 
against Aβ neurotoxicity.75,76 Loeffler et al. noted that 
C3b and iC3b (a cleavage product of C3b) are also 
deposited on AD-affected neurons, much like C1q.77

function of acute phase 
proteins

Several prospective epidemiological studies have 
found that increased acute phase mediator serum 
levels can serve as a risk factor for AD, as detailed in 
a review article by Eikelenboom et al.78 In addition, 
other clinical studies compiled in the review have 
suggested that increased peripheral inflammation is 
associated with a greater risk of dementia, mainly in 
patients with pre-existing cognitive impairments, and 
accelerates subsequent deterioration in patients with 
dementia.78 Higher levels of serum C-reactive protein 
(CRP) in middle-aged patients are also associated with 
an increased risk of AD and vascular dementia, which 
may indicate that inflammatory factors are a reflection 
of both dementia-related peripheral disease and 
cerebral mechanisms.78 Of note is the fact that these 
processes can be measured long before manifestations 
of dementia begin to be observed. Follow-up studies 
in the elderly have also revealed a correlation between 
serum CRP levels and an increased incidence of 
dementia and AD.4 Kravitz et al. reported that high 
CRP levels were related to the increased likelihood of 
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all-cause dementia occurring in the elderly, particu-
larly for females.79 Moreover, Komulainen et al. found 
that elevated high-sensitivity CRP (hsCRP) serum 
concentrations were a predictor of poorer memory 
function in women 12 years after the measurements 
had been taken.80 Therefore, hsCRP may be a useful 
biomarker to identify individuals with an increased 
risk for cognitive decline. 

Strang et al. discussed the fact that no 
pathomechanistic link has yet been established 
between circulating pentameric CRP (pCRP) and 
AD, despite reports of an association between the 
two.81 Their hypothesis was that Aβ plaques induce 
the dissociation of pCRP to single monomers, which 
have more potent pro-inflammatory properties 
than pCRP, and the inflammation is subsequently 
localised to the AD plaques.81 Helmy et al. presented 
evidence that serum levels of IL-6 and CRP were 
significantly elevated among patients with vascular 
and Alzheimer’s dementia in comparison to elderly 
subjects in good health.82 Although IL-6 levels were 
higher in AD patients in comparison to those with 
vascular dementia, the difference was not found to be 
significant. Furthermore, α₁- and α₂-globulins were 
significantly higher in AD patients and researchers were 
able to distinguish vascular from Alzheimer’s dementia.82

Elevations in CRP in middle-aged patients 
have been associated with an increased risk of AD 
development. O’Bryant et al. reported decreased 
CRP levels in AD patients; in fact, mean CRP levels 
were found to be significantly reduced in AD patients 
versus controls (2.9 versus 4.9 μg/mL, respectively).83 
However, Sundelöf et al. reported contradictory 
findings which indicated that hsCRP and serum 
amyloid A levels were not associated with AD risk in 
elderly men.84 

oxidative stress

Cellular oxidative stress—including enhanced protein 
oxidation and nitration, glycoloxidation, lipid peroxi-
dation and Aβ accumulation—is associated with AD.85 
The deposition of Aβ generates ROS, which is involved 
in the inflammatory and neurodegenerative pathology 
of AD. Oxidative stress can therefore exacerbate the 
progression of AD. When repair attempts are made by 
the brain to remedy oxidative damage, characterised by 
APP overexpression, adenosine triphosphate (ATP)-
binding cassette sub-family G member 2 (ABCG2) is 
upregulated and activator protein-1 is activated. Not 
only do these proteins stop blood Aβ from entering 
the brain via the BBB but they also protect against 
oxidative stress by decreasing ROS production, 
boosting antioxidant activity and inhibiting the 
inflammatory response through the inhibition of the 
nuclear factor-κB signalling pathway in brain tissue. As 

a result, ABCG2 may have a protective function in the 
neuroinflammatory response of AD.85–87 Additionally, 
the apparent end-product of APP, the formation and 
accumulation of Aβ, appears to be initiated by ABCG2. 

This process can lead to increased free radical 
production—mainly superoxide anions via the 
mitochondria—which induces the interruption of 
oxidative phosphorylation and engenders a decrease 
in ATP levels. The mitochondrial dysfunction and 
damage that occurs with ageing correlates with the 
augmented intracellular production of oxidants and 
pro-oxidants. The extended oxidative stress in brain 
tissue, and the resultant hypoperfusion, stimulates 
the expression of NOS which subsequently drives the 
formation of ROS and reactive nitrogen species (RNS). 
ROS contributes to the dysfunction of the BBB and 
damage to the brain’s parenchymal cells. Moreover, 
it has been shown that ROS is potentially toxic and 
may damage the proteins, lipids and nucleic acids 
of brain cells and mitochondria, including neurons 
and oligodendrocytes that may mediate toxicity.88,89 

Generation of ROS is controlled by sensitive genes 
called vitagenes. These genes encode proteins such as 
heat shock proteins, nutritional antioxidants which 
play a neuroprotective role.90

Oxidative stress could also lead to further 
damage in AD-affected brains through inducible 
NOS overexpression and constitutive neuronal NOS 
activity, which increases the production of NO and 
its derivative RNS. In an AD-affected brain, NO and 
superoxide anion radicals (O2-) are produced by 
reactive astrocytes and microglia in response to Aβ.91–93 
Formed from NO and O2-, peroxynitrite anions 
are another component of oxidative stress. These 
extremely reactive oxidising and nitrating agents lead 
to the oxidisation of cellular components, increased Aβ 
aggregation and a stimulated inflammatory response.94

In the early stages of AD, the pathology shows 
that inducible neuron-specific cyclooxygenase-2 
(COX-2) enzymes are expressed and upregulated 
by neuronal cells which are closely linked with the 
Aβ-bearing cells. It has been suggested that Aβ can 
stimulate activity of COX-2 oxygenase and peroxidase 
in a cell-free system—this stimulation of the two-step 
action of COX-2 leads to the production of ROS and 
prostaglandin E2.

85,95–97 In addition, recent findings in 
mouse models suggest a role for COX/prostaglandin 
E2 signalling in the development of AD.98

Treatment and Immunotherapy 
for Alzheimer’s Disease

There is currently no cure available for AD; however, 
drug and non-drug treatments may help with both 
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cognitive and behavioural symptoms of the disease. 
Two types of medications designed to treat the 
cognitive manifestations of AD have been approved 
by the Food and Drug Administration in the USA: 
cholinesterase inhibitors and a new N-methyl-D-
aspartate receptor antagonist, memantine.99 Three 
forms of cholinesterase inhibitor drugs are commonly 
prescribed: donepezil (approved to treat all stages of 
AD), rivastigmine and galantamine (both approved to 
treat only mild to moderate cases of AD).100

Inflammation is one of numerous hypotheses that 
have been proposed for the multifactorial aetiology 
of AD; indeed, inflammation may interact with other 
triggers in several ways. This network of mechanisms 
makes it difficult to identify any specific inflammatory 
process, causal factor or cell in order to determine their 
individual role in AD.101 Risk factors for AD, which may 
include genetic, biological and environmental factors, 
contribute to neuro-inflammation and to subsequent 
neurodegeneration in the later stages of AD. However, 
they may have fewer effects on the early pathogenesis 
of the disease.102,103 Therefore, due to the distinctive 
role of inflammation in the early versus late stages of 
AD, anti-inflammatory agents, such as non-steroidal 
anti-inflammatory drugs (NSAIDs), may potentially 
be a treatment option for AD patients, although this 
would be dependent on the stage of the disease. 

Researchers have reported a decrease in AD 
development among subjects taking NSAIDs for 
long periods of time; thus, it has been proposed that 
NSAIDs could directly reduce the production of 
Aβ through several mechanisms.9,104 Unfortunately, 
conflicting results have been reported in the literature 
and related clinical trials have not yet yielded 
promising findings. The toxic effects of NSAID 
treatments also prevent their widespread use.9,104 

Additionally, anti-inflammatory medications may 
have no effect on patients in later stages of the disease. 
This is because the most important aetiological 
factors for early-onset AD are the mismetabolism 
of APP along with the increased production of Aβ 
followed by the deposition of fibrillary Aβ, which can 
activate the innate immunity receptors leading to 
activation of microglia and reactive astrocytes. This 
exacerbates neurodegeneration through the release 
of inflammatory cytokines, ROS and other factors. 
Modifications of these factors can occur very early 
during the development of the disease; trials with 
anti-inflammatory agents may therefore be ineffective 
in patients with severe AD.6 Furthermore, the efficacy 
of anti-inflammatory drugs such as aspirin, steroids 
and other traditional NSAIDs and COX-2 inhibitors 
in AD patients has not yet been proven; thus, these 
drugs cannot be recommended for AD treatment.105

Immunotherapy has been proposed as a potential 
candidate for the treatment of AD. Both active and 
passive Aβ immunotherapies have been developed 
to decrease the load of Aβ by enhancing its rate 
of elimination. Vaccinations, in the form of active 
immunisation with Aβ42 (the common form of Aβ in 
amyloid plaques) or other synthetic peptides, have 
been successfully assessed in transgenic animal models 
of AD.106 The basis of this approach is the priming of T, B 
and microglial cells, which provoke immune responses. 

One type of passive immunotherapy, administering 
monoclonal antibodies against the Aβ fragment, 
diminishes the need for patients to mount immunity 
against Aβ peptides. An on-going clinical trial in 
the USA sponsored by a pharmaceutical company (Eli 
Lilly & Co., Indianapolis, Indiana, USA) is currently 
testing to see if treatment with solanezumab, a 
monoclonal antibody against Aβ, significantly slows the 
loss of awareness and cognitive and functional decline 
in patients with mild AD.107 However, concerns exist 
regarding the use of related monoclonal antibodies 
as a therapeutic option. Firstly, new approaches are 
needed due to the poor penetration of antibodies into 
the brain and, secondly, recognition of the clearance 
pathways of Aβ/anti-Aβ immune complexes is essen-
tial to circumvent obstruction of these pathways 
during treatment.106

Recent Advances in 
Alzheimer’s Disease

A prospective longitudinal study by Bateman et al. 
has indicated that Aβ deposition in the brain is 
detectable more than 20 years prior to the onset 
of AD symptoms.108 In addition, although the 
production of Aβ in AD patients is similar to that of 
cognitively normal individuals, clearance of Aβ in 
the brain of AD patients is significantly reduced in 
comparison to control subjects.109 Immunotherapy 
and the involvement of antibodies could therefore 
be a successful approach to facilitating this clearance 
process. Active immunisation with the DNA Aβ42 
vaccination may be effective in accomplishing this; 
the method involves injecting DNA encoding Aβ42 

where it is subsequently translated in the immunised 
individual to express Aβ peptide which then 
stimulates the respective immune responses against 
Aβ42. Qu et al. found a 50% reduction in the level of 
Aβ42 plaques in transgenic mouse models when using 
this approach; this reduction was later confirmed by 
another study.110,111 

Currently, other approaches for AD therapy focus 
on clearance of Aβ fragments by different pathways, 
including chaperone-mediated and autophagocytic 
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clearance.112 Chaperones are a specific cluster of 
proteins which can correct or prevent the misfolding 
of proteins. Autophagy is a normal cellular process 
in the body which preserves homeostasis or normal 
functioning through protein destruction and turnover 
of destroyed cell organelles for new cell formation. 
Several studies have noted the occurrence of 
autophagocytic vacuoles in the brains of patients 
with AD.113,114 Caccamo et al. reported that the level 
of beclin 1, a protein involved in the formation of 
the autophagosome, is diminished in the brains of 
AD patients.115 Moreover, Martorana et al. found an 
augmented subset of B cells with a memory double-
negative phenotype in elderly people.116 Interestingly, 
Colonna-Romano et al. reported that B cells are 
late memory or exhausted cells, which may be a 
manifestation of ageing or a dysregulation of the 
immune system.117 

Conclusion

Numerous hypotheses have been proposed for the 
multifactorial aetiology of AD, including inflammation. 
Current evidence supports the potential role of 
inflammation in AD, although this factor may interact 
with other genetic, biological and environmental 
triggers in several ways. Immunotherapy and the use 
of antibodies could have applications for patients 
with AD. In order to improve the range and efficacy 
of therapeutic options for AD patients and those with 
similar neurodegenerative disorders, further research 
is recommended to advance the current knowledge 
of inflammatory processes with regards to this form 
of dementia.
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