1	SUBMITTED 14 MAY 24					
2	REVISION REQ. 26 JUN 24; REVISION RECD. 14 JUL 24					
3	ACCEPTED 1 AUG 24					
4	ONLINE-FIRST: OCTOBER 2024					
5	DOI: https://doi.org/10.18295/squmj.10.2024.060					
6						
7	Diaphragmatic Paralysis Following Chest Tube Insertion in an					
8	Infant					
9	Case report and literature review					
10	*Mohammed Al Ghafri, Said Al Hanshi, Ahmad E. Elkhamisy,					
11	Ahmed M. Fouad					
12						
13	Department of Pediatric Cardiac Intensive Care Unit, National Heart Center, The					
14	Royal Hospital, Muscat, Oman					
15	*Corresponding Author's e-mail: <u>mhghafri@hotmail.com</u>					
16						
17	Abstract					
18	Diaphragmatic paralysis (DP) can occur due to central nervous system pathology or					
19	peripheral nerve injury. Direct injury to the phrenic nerve after intercostal chest drain					
20	(ICD) insertion for treatment of pneumothorax is an infrequent complication. We					
21	present a 4-month-old baby, ex-preterm 27 weeks, who was admitted to a tertiary care					
22	hospital pediatric intensive care unit in Muscat, Oman, in 2023 with severe respiratory					
23	syncytial virus bronchiolitis and required intubation and mechanical ventilation (MV).					
24	His illness was complicated by right-side pneumothorax that required ICD insertion.					
25	Post-extubation, he had persistent tachypnea with the inability to be weaned from					
26	noninvasive ventilation (NIV). Chest x-ray (CXR) and fluoroscopy showed a high					
27	right diaphragm dome with paradoxical movements. He improved dramatically after					
28	the plication of the right diaphragm and was discharged home on the 9th day after the					
29	plication.					
30	Keywords: Chest Tubes/Adverse Effects; Phrenic Nerve/Injuries; Diaphragm					
31	Paralysis/Etiology					
32						

33 Introduction:

The phrenic nerve originates mainly from the 4th cervical nerve. It carries motor, 34 sensory, and sympathetic nerve fibers for diaphragmatic function. Activation of the 35 motor innervation causes the diaphragm to contract with inspiration, resulting in a 36 flattened diaphragm. During exhalation, the diaphragm relaxes and returns to the dual 37 dome shape.¹ Phrenic nerve injury can be seen due to central nervous system 38 39 pathology or peripheral nerve injury. Congenital heart disease surgeries, birth trauma, and pneumonia have all been known as reasons for peripheral phrenic nerve 40 paralysis.² 41

42

43 Direct trauma to the phrenic nerve after chest tube insertion has been reported. The

44 reported cases in the literature were mainly in neonates.²⁻⁶ The diagnosis is mainly

45 clinical and can be confirmed by CXR, ultrasound, and fluoroscopy.⁷ It can be further

46 confirmed by trans-diaphragmatic pressure (Pdi) measurements and

electromyographic study. A recent study showed that Pdi morphology can identify

48 unilateral paralysis.⁸ However, to obtain these parameters, it is necessary to introduce

49 esophageal and gastric balloons and to use special equipment and software, thus

50 limiting their use in everyday clinical practice.

51

In this reported case, we describe a 4-month-old infant who developed right-sided diaphragmatic paralysis from ICD insertion for tension pneumothorax. He was successfully weaned off from respiratory support after diaphragmatic plication. Publishing this very unusual case will enlighten physicians on the importance of proper ICD positioning to avoid the inconvenient and troublesome side effects of diaphragm paralysis.

58

59 Case Report

A 4-month-old ex-preterm 27 weeks with a corrected age of six weeks and a current
weight of 4.6 kg was admitted to a tertiary care hospital pediatric intensive care unit
in Muscat, Oman in 2023 with respiratory syncytial virus bronchiolitis. His initial
CXR [Figure 1] showed bilateral infiltration with normal position of the diaphragms.
He was started on NIV with no improvement and required intubation and mechanical
ventilation. He developed tension pneumothorax on the right side. A 12 Fr chest tube

66	was inserted in the right 5th intercostal space anterior axillary line using Seldinger's					
67	technique [Figure 2]. The child's condition gradually improved, and tracheal					
68	extubation was done after 24 days. The ICD was removed by the 7th day. At that					
69	point in time, the right dome of the diaphragm was found to be elevated [Figure 3].					
70	The baby continued to need NIV via nasal biphasic airway pressure for a further 19					
71	days. Ultrasound examination off Positive Pressure Ventilation (PPV) showed					
72	limited movement of the right diaphragm. In addition, Fluoroscopy off PPV showed					
73	paradoxical movement of the diaphragm. He was weaned down to High Flow Nasal					
74 75	Cannula (HFNC) but could not tolerate it and was put back on NIV.					
76	A diaphragmatic plication was performed, and the child was extubated on the 5 th					
77	postoperative day and required NIV for only one day. Later, the baby was weaned to a					
78	low-flow nasal cannula and then to room air. He was discharged home on the 9th day					
79	after the diaphragmatic plication.					
80						
81	Verbal consent for publication purposes was obtained from the father.					
82						
83	Discussion					
84	Phrenic nerve injury can be seen due to central nervous system pathology or					
85	peripheral nerve injury. Congenital heart disease surgeries, birth trauma, and					
86	pneumonia have all been known as reasons for peripheral phrenic nerve paralysis.					
87	Congenital weakness (eventration) is related to muscular aplasia of the diaphragm and					
88	is commonly found on the right side. Acquired forms are usually traumatic, such as					
89	birth trauma or lateral thoracotomy, and are often unilateral, though the distribution of					
90	cases is equal between both sides. ⁹					
91						
92	The phrenic nerve is the longest branch of the cervical plexus and enters the thorax					
93	through the superior thoracic aperture, between the subclavian artery and vein. 10 It					
94	descends, crossing the apex of the right or left pleural cavity, coursing between the					
95	mediastinal pleura and the pericardium. ¹¹ The phrenic nerve courses along the					
96	pericardium bilaterally; therefore, any chest tube reaching the mediastinal border may					

- 97 cause nerve compression. Nerves can be damaged by compression or stretching; nerve
- 98 compression studies on rat sciatic and optic nerves showed that ischemia from

99 compression can lead to significant nerve damage.^{12,13} Compression injury of the
100 radial nerve due to blood pressure cuff has also been reported.^{14,15}

101

We report an uncommon cause of (DP), which was associated with blunt trauma caused by chest drain for right side pneumothorax. In our case, the ICD was inserted in the right 5th intercostal space anterior axillary line and was directed to the apicomedial zone, as shown in [Figure 1]. Ghani et al. conducted a retrospective cohort analysis of over 531 patients, showing a strong association between the right apicomedial chest drains looping at the second right intercostal space level and DP (P 0.05). They called this zone the danger zone.¹⁶

109

The exact pathophysiology of reversibility of nerve injury after nerve compression or 110 blunt injury is unknown. It is thought to be a local reaction to periods of ischemia that 111 result in ion-induced conduction blockade. There is initially demyelination of the 112 axon, which eventually recovers. Loss of function occurs until remyelination occurs, 113 sometimes rapidly over days or up to 12 weeks.^{17,18} ICD insertion or manipulation 114 may induce phrenic nerve injury, which can be either reversible or irreversible. By the 115 age of one year, 50-80% of cases show recovery without intervention.⁹PPV may 116 obscure the effect of the diaphragmatic injury and make it only discoverable after the 117 removal of support. DP can induce respiratory insufficiency and increase 118 postoperative morbidity and respiratory support dependency, especially in neonates 119 and small infants.¹⁹ 120

121

In our case, the suspicion of right-sided diaphragmatic palsy was not raised until the
Positive end-expiratory pressure was weaned down, targeting extubation when CXR
showed a high position of the right diaphragm.

125

126 Different modalities to diagnose DP, including radiography, fluoroscopy, ultrasound,

and electrophysiology, are used. Fluoroscopy is a modality that can visualize the

128 diaphragm continuously during the normal respiratory cycle. It is easy as a procedure,

and for interpretation, it has been considered the gold standard for unilateral DP

130 diagnosis, but it needs to be done off PPV. 20

131

- 132 Diaphragmatic ultrasound is a portable, non-invasive, easy-to-perform, and well-
- tolerated test with a linear relationship between diaphragmatic movement and inspired
- volume, which permits quantitative and qualitative evaluation of diaphragmatic
- 135 movement.²¹ Therefore, ultrasound has been recommended for evaluating
- 136 diaphragmatic movement on suspicion of weakness or paralysis.
- 137
- 138 Ultrasound has been proven beneficial for detecting diaphragmatic dysfunction, with
- high sensitivity (93%) and specificity (100%) for diaphragmatic neuromuscular
- disease.^{22,23} Phrenic nerve stimulation is not a standard infant modality; in our case, it
- 141 has not been used.
- 142

DP management secondary to phrenic nerve injury should be individualized to the patient as there is no clear and solid rule. Conservative versus surgical treatment of diaphragmatic eventration is still controversial. Being asymptomatic without ventilatory support is an indicator of conservative management. However, to the best of the authors' knowledge and following a literature review, the duration of dependency on ventilatory support is not specified.

149

To date, there are a total of eight reported for non-congenital heart surgery cases of 150 DP secondary to ICD insertion for pneumothorax in infants [Table 1].²⁻⁶ Five infants 151 required diaphragmatic plication and the other recovered without surgical 152 intervention. Spontaneous recovery is unlikely if there are persistent signs of phrenic 153 nerve palsy after one month of insult or extubation failure.²⁴ Our case remained on 154 NIV/HFNC support after extubation for around 18 days. Multidisciplinary discussion 155 concluded proceeding with diaphragmatic plication due to its safety profile and lower 156 chances of allowing for lung de-recruitment and strengthening the intercostal and 157 abdominal muscles. Nevertheless, it doesn't prevent functional recovery.²⁵ It was 158 suggested to place the ICD at least 2 cm away from the vertebra or mediastinal border 159 to avoid phrenic nerve injury.^{4,26} Our patient underwent diaphragmatic plication, and 160 a few days after surgery, he was discharged home without any noticeable respiratory 161 distress. 162

163

164 Conclusion

- 165 ICD insertion is an infrequent cause of phrenic nerve injury and diaphragm paralysis,
- which can be confirmed by ultrasound and fluoroscopy. Diaphragm plication might be
- 167 necessary if signs of phrenic nerve palsy persist and the patient has extubation failures
- 168 or remains dependent on respiratory support. This was demonstrated in our patient,
- 169 who remained dependent on NIV support till he had diaphragm plication. ICD
- 170 reaching the vertebra or mediastinal border may cause phrenic nerve injury.
- 171

172 Authors' Contribution

- 173 MAG contributed towards conception of the work, acquisition of data, interpretation
- 174 of data, drafting of manuscript and intellectual content. SAH contributed towards
- 175 literature review. AEE contributed towards conception of the work, data collection
- and summarizing the case report. AMF contributed towards conception of the work,
- 177 data collection and intellectual input. All authors approved the final version of the
- 178 manuscript.
- 179

186

180 **References**

- Kaitlin A. Oliver; John V. Ashurst. StatPearls [Internet]. StatPearls [Internet].
 Treasure Island (FL): StatPearls Publishing; 2024 Jan. 2023 Jul 24. Anatomy,
 Thorax, Phrenic Nerves.
 Ayalon A, Anner H, Moghilner M, Schiller M. Eventration of the diaphragm
 due to phrenic nerve injury caused by intercostal drainage. J Pediatr Surg.
- Philipps AF, Rowe JC, Raye JR. Acute diaphragmatic paralysis after chest
 tube placement in a neonate. AJR Am J Roentgenol. 1981; 136:824-5. doi:
 10.2214/ajr.136.4.824.

1979; 14:473-4. doi: 10.1016/s0022-3468(79)80020-2.

- Nahum E, Ben-Ari J, Schonfeld T, Horev G. Acute diaphragmatic paralysis
 caused by chest-tube trauma to phrenic nerve. Pediatr Radiol. 2001; 31:444-6.
 doi: 10.1007/s002470100428.
- 5. Williams O, Greenough A, Mustfa N, Haugen S, Rafferty GR. Extubation
 failure due to phrenic nerve injury. Arch Dis Child Fetal Neonatal Ed 2003;
 88: F72–F73.

196	6.	Odita JC, Khan AS, Dincsoy M, Kayyali M, Masoud A, Ammari A. Neonatal
197		phrenic nerve paralysis resulting from intercostal drainage of pneumothorax.
198		Pediatr Radiol. 1992; 22:379-81. doi: 10.1007/BF02016263.
199	7.	Arya H, Williams J, Ponsford SN, Bissenden JG. Neonatal diaphragmatic
200		paralysis caused by chest drains. Arch Dis Child. 1991; 66:441-2. doi:
201		10.1136/adc.66.4_spec_no.441.
202	8.	Valdivia M, Naranjo JR, Serrano JM. Biphasic transdiaphragmatic pressure
203		morphology identifies unilateral diaphragmatic paralysis. Med Intensiva (Engl
204		Ed). 2024 May 28:S2173-5727(24)00133-4. doi:
205		10.1016/j.medine.2024.05.010.
206	9.	Wayne ER, Campbell JB, Burrington JD, Davis WS. Eventration of the
207		diaphragm. J Pediatr Surg. 1974; 9:643-51. doi: 10.1016/0022-
208		3468(74)90101-8.
209	10	. Ostrowska, de Carvalho M. Injuries of the nerves of the thorax. In: Tubbs R.S,
210		Rizk E, Shoja M.M, Loukas M, Barbaro N. Spinner R.J. Nerves and Nerve
211		Injuries. Academic Press, San Diego 2015. Pp. 525-543.
212	11	. Mandoorah S, Mead T. Phrenic Nerve Injury. 2023 Aug 20. In: StatPearls
213		[Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan
214	12	. Adachi M, Takahashi K, Nishikawa M, Miki H, Uyama M. High intraocular
215		pressure-induced ischemia and reperfusion injury in the optic nerve and retina
216		in rats. Graefes Arch Clin Exp Ophthalmol. 1996; 234:445-51.
217	13	. Lundborg G, Myers R, Powell H. Nerve compression injury and increased
218		endoneurial fluid pressure: a "miniature compartment syndrome". J Neurol
219		Neurosurg Psychiatry. 1983; 46:1119-24.
220	14	. Bickler PE, Schapera A, Bainton CR. Acute radial nerve injury from use of an
221		automatic blood pressure monitor. Anesthesiology. 1990; 73:186-8.
222	15	. Lin CC, Jawan B, de Villa MV, Chen FC, Liu PP. Blood pressure cuff
223		compression injury of the radial nerve. J Clin Anesth. 2001; 13:306-8.
224	16	. Ghani MOA, Foster J, Shannon CN, Bichell DP. Association of chest tube
225		position with phrenic nerve palsy after neonatal and infant cardiac surgery. J
226		Thorac Cardiovasc Surg. 2021; 161:1618-1622.e1. doi
227		10.1016/j.jtcvs.2020.05.121.

17. Nakagama Y, Kaneko Y, Ono H. Reversible diaphragmatic paralysis caused 228 by a malpositioned chest tube. Cardiol Young. 2015; 25:1382-4. doi: 229 10.1017/S1047951114002546. 230 18. Dumitru D, Zwarts MJ, Amato AA. Peripheral nervous system's reaction to 231 injury. In: Dumitru D, Amato AA, Zwarts M, editors. Electrodiagnostic 232 medicine. 2nd ed. Philadelphia: Hanley and Belfus; 2001. p. 115-56. 233 19. Greene W, L'Heureux P, Hunt CE. Paralysis of the diaphragm. Am J Dis 234 Child. 1975; 129:1402-5. doi: 10.1001/archpedi.1975. 02120490020007. 235 20. Nason LK, Walker CM, McNeeley MF, Burivong W, Fligner CL, Godwin 236 JD. Imaging of the diaphragm: anatomy and function. Radiographics. 2012; 237 32:E51-70. doi: 10.1148/rg.322115127. 238 21. Cohn D, Benditt JO, Eveloff S, McCool FD. Diaphragm thickening during 239 inspiration. J Appl Physiol (1985). 1997; 83:291-6. doi: 240 10.1152/jappl.1997.83.1.291. 241 22. O'Gorman CM, O'brien TG, Boon AJ. Utility Of diaphragm ultrasound in 242 myopathy. Muscle Nerve. 2017; 55:427-429. doi: 10.1002/mus.25429. 243 23. Boon AJ, Sekiguchi H, Harper CJ, Strommen JA, Ghahfarokhi LS, Watson 244 JC, Sorenson EJ. Sensitivity and specificity of diagnostic ultrasound in the 245 diagnosis of phrenic neuropathy. Neurology. 2014; 83:1264-70. 246 Doi:10.1212/WNL.00000000000841. 247 24. de Vries TS, Koens BL, Vos A. Surgical treatment of diaphragmatic 248 249 eventration caused by phrenic nerve injury in the newborn. J Pediatr Surg. 1998; 33:602-5. doi: 10.1016/s0022-3468(98)90325-6. 250 25. Gerard-Castaing N, Perrin T, Ohlmann C, Mainguy C, Coutier L, Buchs C, 251 Reix P. Diaphragmatic paralysis in young children: A literature review. 252 Pediatr Pulmonol. 2019; 54:1367-1373. doi: 10.1002/ppul.24383. 253 26. Hwang MS, Chu JJ, Su WJ. Diaphragmatic paralysis caused by malposition of 254 chest tube placement after pediatric cardiac surgery. Int J Cardiol. 2005; 255 99:129-31. doi: 10.1016/j.ijcard.2003.10.060. 256 257

Figure 1: Chest X-ray at the initial presentation shows a normal diaphragm position.

- **Figure 2:** Chest X-ray after intercostal chest tube insertion showing tube position at
- the apex (superior) of the right lung.

Figure 3: Chest X-ray showing a high dome of the right diaphragm after extubation.

Author and year of publication	No. of cases	Age in days	Diagnostic tool	Salient features	ICD Position	Outcome
Ayaln et al. (1979)	1	18	CXR and Fluoroscopy	Right ICD inserted to drain pneumothorax	Low mediastin um	Remained symptomatic till age 18 of life. Diaphragmatic plication done. Follow up after 2 months showed complete recovery
Philipps et al. (1981)	1	1	CXR and fluoroscopy	Left side ICD inserted to drain pneumothorax	Middle mediastin um	Required NIV weaned gradually and discharged at age of 6 weeks
Nahum et al. (2001)	1	1260	CXR, Fluoroscopy and MRI thorax	Right side ICD inserted to drain pneumothorax	Not mentioned	Required MV, weaned after 11 days, and discharged home after 24 days with no follow up
Williams et al. (2003)	1	33	CXR, fluoroscopy, chest ultrasound and Percutaneous electric stimulation	Bilateral effusions Required 2 ICD on each side elevated diaphragm on Right side	Middle mediastin um	Failed extubation 4 times. Plication done on day 75
Odita et al.	1	4	CXR, fluoroscopy and chest ultrasound	Left side ICD inserted for pneumothorax	Overly to the spine	Complete recovery after 5 weeks
(1992)	1	2	CXR, fluoroscopy and chest US	Left side ICD inserted to drain pneumothorax	Overly to the spine	Required plication by day 36 of life
	1	1	CXR	Left side spontaneous pneumothorax	Overly to the spine	Required plication at age of 1 month
	1	2	CXR	Recurrent pneumothorax on Right side	Overly to the spine	Required plication at age of 1 year

Table 1: Summary of the reported cases of diaphragmatic paralysis.²⁻⁶