Predicting the Pathogenic Potential of BRCA1 and BRCA2 Gene Variants Identified in Clinical Genetic Testing

Clare Brookes, Stella Lai, Elaine Doherty, Donald R. Love

Abstract


Objectives: Missense variants are very commonly detected when screening for mutations in the BRCA1 and BRCA2 genes. Pathogenic mutations in the BRCA1 and BRCA2 genes lead to an increased risk of developing breast, ovarian, prostate and/or pancreatic cancer. This study aimed to assess the predictive capability of in silico programmes and mutation databases in assisting diagnostic laboratories to determine the pathogenicity of sequence-detectable mutations. Methods: Between July 2011 and April 2013, an analysis was undertaken of 13 missense BRCA gene variants that had been detected in patients referred to the Genetic Health Services New Zealand (Northern Hub) for BRCA gene analysis. The analysis involved the use of 13 in silico protein prediction programmes, two in silico transcript analysis programmes and the examination of three BRCA gene databases. Results: In most of the variants, the analysis showed different in silico interpretations. This illustrates the interpretation challenges faced by diagnostic laboratories. Conclusion: Unfortunately, when using online mutation databases and carrying out in silico analyses, there is significant discordance in the classification of some missense variants in the BRCA genes. This discordance leads to complexities in interpreting and reporting these variants in a clinical context. The authors have developed a simple procedure for analysing variants; however, those of unknown significance largely remain unknown. As a consequence, the clinical value of some reports may be negligible.



Keywords


Genes, BRCA1; Genes, BRCA2; HBOC Syndrome; In Silico.

Full Text:

PDF

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Sultan Qaboos University Medical Journal, College of Medicine and Health Sciences, Sultan Qaboos University, PO Box 35, Postal Code 123, Al-Khod, Muscat, Oman

ISSN (Print edition): 2075-051X ISSN (Internet edition): 2075-0528

Copyright SQUMJ 2019. This journal and its content is licensed under a Creative Commons Attribution No Derivatives 4.0 International license.

Flag Counter