Mechanisms of Diabetes-Induced Liver Damage : The role of oxidative stress and inflammation (

Jamaludin Mohamed, Nazratun Nafizah A. H., Zariyantey A. H., Budin S. B.

Abstract


Diabetes mellitus is a non-communicable disease that occurs in both developed and developing countries. This metabolic disease affects all systems in the body, including the liver. Hyperglycaemia, mainly caused by insulin resistance, affects the metabolism of lipids, carbohydrates and proteins and can lead to nonalcoholic fatty liver disease, which can further progress to non-alcoholic steatohepatitis, cirrhosis and, finally, hepatocellular carcinomas. The underlying mechanism of diabetes that contributes to liver damage is the combination of increased oxidative stress and an aberrant inflammatory response; this activates the transcription of pro-apoptotic genes and damages hepatocytes. Significant involvement of pro-inflammatory cytokines—including interleukin (IL)-1β, IL-6 and tumour necrosis factor-α—exacerbates the accumulation of oxidative damage products in the liver, such as malondialdehyde, fluorescent pigments and conjugated dienes. This review summarises the biochemical, histological and macromolecular changes that contribute to oxidative liver damage among diabetic individuals.



Keywords


Diabetes Mellitus; Liver Diseases; Inflammation; Oxidative Stress.

Full Text:

PDF


DOI: http://dx.doi.org/10.18295/squmj.2016.16.02.002

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Sultan Qaboos University Medical Journal, College of Medicine and Health Sciences, Sultan Qaboos University, PO Box 35, Postal Code 123, Al-Khod, Muscat, Oman

ISSN (Print edition): 2075-051X ISSN (Internet edition): 2075-0528

Copyright SQUMJ 2019. This journal and its content is licensed under a Creative Commons Attribution No Derivatives 4.0 International license.

Flag Counter