The Role of N-Acetylcysteine Supplementation on the Oxidative Stress Levels, Genotoxicity and Lineage Commitment Potential of Ex Vivo Murine Haematopoietic Stem/Progenitor Cells

Zariyantey A. Hamid, Hui Y. Tan, Paik W. Chow, Khairul A. W. Harto, Chin Y. Chan, Jamaludin Mohamed

Abstract


Objectives: The ex vivo maintenance of haematopoietic stem/progenitor cells (HSPCs) is crucial to ensure a sufficient supply of functional cells for research or therapeutic applications. However, when exposed to reactive oxygen species (ROS) in a normoxic microenvironment, HSPCs exhibit genomic instability which may diminish their quantity and quality. This study aimed to investigate the role of N-acetylcysteine (NAC) supplementation on the oxidative stress levels, genotoxicity and lineage commitment potential of murine haematopoietic stem/progenitor cells (HSPCs). Methods: This study was carried out at the Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia, between June 2016 and July 2017. Bone marrow cells were isolated from nine mice and cultured in a growth medium. Various concentrations of NAC between 0.125–2 μM were added to the culture for 48 hours; these cells were then compared to non-supplemented cells harvested from the remaining three mice as the control group. A trypan blue exclusion test was performed to determine cell viability, while intracellular ROS levels and genotoxicity were determined by hydroethidine staining and comet assay, respectively. The lineage commitment potential of erythroid, myeloid and pre-B-lymphoid progenitor cells was evaluated via colony-forming cell assay. Results: NAC supplementation at 0.25, 0.5 and 2 μM significantly increased cell viability (P <0.050), while intracellular ROS levels significantly decreased at 0.25 and 0.5 μM (P <0.050). Moreover, DNA damage was significantly reduced at all NAC concentrations (P <0.050). Finally, the potential lineage commitment of the cells was not significantly affected by NAC supplementation (P >0.050). Conclusion: The findings of this study indicate that NAC supplementation may potentially overcome the therapeutic limitations of ex vivo-maintained HSPCs.

Keywords: Hematopoietic Stem Cells; N-acetylcysteine; Reactive Oxygen Species; DNA Damage; Cell Lineage.


Full Text:

PDF


DOI: http://dx.doi.org/10.18295/squmj.2018.18.02.002

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

Sultan Qaboos University Medical Journal, College of Medicine and Health Sciences, Sultan Qaboos University, PO Box 35, Postal Code 123, Al-Khod, Muscat, Oman

ISSN (Print edition): 2075-051X ISSN (Internet edition): 2075-0528

Copyright SQUMJ 2018. This journal and its content is licensed under a Creative Commons Attribution No Derivatives 4.0 International license.

Flag Counter