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1.  Introduction

The study of solitary-wave dates from 1845 when
John Scott Russell (Svendssen 2006) reported his
experiments. The discovery of the solitary wave have
lead to many mathematical investigations that try to
understand its properties.  In particular,  Korteweg  and   
______________________________________
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de Vries derived their well-known KdV equation for
water waves propagating in one direction on shallow
water (Dean et al. 1991). They also found an exact
solution of the KdV equation for a single wave propa-
gating with a uniform velocity without changing form-
the solitary wave. 
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Abstract: A new numerical wave generation method is used to investigate the head-on collision of two
solitary waves. The reflection at vertical wall of a solitary wave is also presented. The originality of this
model, based on the Navier-Stokes equations, is the specification of an internal inlet velocity, defined as
a source line within the computational domain for the generation of these non linear waves. This model
was successfully implemented in the PHOENICS (Parabolic Hyperbolic Or Elliptic Numerical
Integration Code Series) code. The collision of two counter-propagating solitary waves is similar to the
interaction of a soliton with a vertical wall. This wave generation method allows the saving of consider-
able time for this collision process since the counter-propagating wave is generated directly without
reflection at vertical wall. For the collision of two solitary waves, numerical results show that the run-up
phenomenon can be well explained, the solution of the maximum wave run-up is almost equal to exper-
imental measurement. The simulated wave profiles during the collision are in good agreement with
experimental results. For the reflection at vertical wall, the spatial profiles of the wave at fixed instants
show that this problem is equivalent to the collision process.
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The problem of head-on collision of two solitary
waves takes its origin from the study of the run-up of
these waves on a vertical wall (tsunami case). The
tsunamis are the most known for the several types of
extreme waves (Neelamani et al. 2009) and to simu-
late a tsunami wave, the best and simplest model is the
solitary wave. The study of the dynamics of these
waves helps greatly with the protection of coastal
upland from erosion which is one of the challenging
problems. Different types of shore protection struc-
tures are in use around the world.

Indeed, in the absence of viscosity and in the sym-
metric case, both problems become equivalent. Many
studies have been conducted on this problem, analyti-
cally, numerically and experimentally, including the
calculation of the maximum run-up (or superlinear
amplitude increase) and the phase shifts. Maxworthy
(1976) conducted experiments on the collision of two
solitary waves; where he showed that the maximum
run-up reached a value higher than the sum of waves
amplitudes before collision.  Su et al. (1980) and Craig
et al. (2006) presented analytical and numerical stud-
ies on the head-on collision of two solitary waves and
they found that the collision was not elastic, and a
small amount of energy was lost by the waves to form
secondary waves. Wu (1998) presented an analytical
study for head-on and following collisions of solitary
waves of unequal amplitudes. He distinguished three
regimes: the single peak, the double peak and the crit-
ical regime. 

According to Lubin et al. (2005), there is a lack of
numerical simulation models of the head-on collision
waves based on Navier-Stokes equations. The most
known method for linear and non linear wave genera-
tion is the internal source region proposed by Lin et al.
(1999).  However, the existing CFD code does not
integrate any numerical wave method.

Power et al. (1984) studied the reflection of a soli-
tary wave on a vertical wall by solving the Boussinesq
equations analytically as well as numerically. The ana-
lytical solution is obtained through an asymptotic
matching technique, while the numerical solution is
based on a finite difference scheme. They calculated
the amplitude of the maximum run-up and the time at
which it reached. They found that the incident wave is
not reflected immediately as predicted by linear theo-
ry. In addition, they showed that the wave undergoes a
phase delay during the collision. This phase was found
to be inversely proportional to the square root of the
initial wave amplitude. Cooker et al. (1997) also stud-
ied the reflection of a solitary wave on a vertical wall.
Their numerical approach based on a boundary inte-
gral method is used to calculate the fluid potential flow
described by the Euler equations. They calculated the
wall residence time, the time the wave crest remains

attached to the wall, a concept introduced for the first
time by (Temperville 1979). They showed that the wall
residence time provides an unambiguous characteriza-
tion of the wave.  They compared their results on the
time of attachment and detachment of the wave crest
with the asymptotic formulas of (Su et al. 1980).
Further results on the flow were obtained, including
the maximum run-up and the instantaneous forces
exerted on the wall.  Their numerical results on the res-
idence time are in accordance with measurements
taken from a film on the reflection of a solitary wave
on a vertical wall from the experiences of (Maxworthy
1976).

The proposed numerical wave method is used in the
simulation of two-dimensional head-on collision of
two solitary waves and the reflection of a solitary
wave at vertical wall. It is based on the Navier-Stokes
equations with additional transport scalar equation to
describe the free surface evolution (the Volume Of
Fluid (VOF) equation). The non linear solitary waves
are generated by two source lines in internal flow
region. At each source line, an internal time dependent
inlet velocity is imposed according to the wave char-
acteristics (Hafsia et al. 2009). The numerical results
are compared to experimental results reported by Ming
et al. (2003) and non linear wave analytical solution.
Numerical results given by Power et al. (1984) are
used to validate the reflection of solitary wave at ver-
tical wall.

2. Governing  Equations  and   Boundary 
Conditions

2.1  Transport Equations

For unsteady flow and incompressible fluid, the
mass conservation equation is written in Cartesian
coordinates:

(1)

With u and w are the velocity components respec-
tively in the x and z directions.

In order to avoid velocity damping in uniform hor-
izontal flow, the damping force in horizontal direction
is not considered. The momentum transport equation
describing this velocity component is:

(2)

A dissipation zone is introduced in order to damp
the wave at the open boundaries. Within this region, a
friction source term is added to the momentum trans-
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port equation in the vertical direction:

(3)

With, P, the pressure; v, kinematic viscosity; ,
fluid density; g,  gravitational acceleration and  (x)  is
a damping function equals to zero except for the added
dissipation zone.  A linear damping law is adopted:

(4)

2.2  Free Surface Treatment
The free surface displacements may be treated with

a convective transport equation describing the fraction
of flow (VOF) in each cell of the computation domain:

(5)

The free surface profile is considered as a two-
phase flow involving water phase and air phase. We
assume that the sliding between the two phases is neg-
ligible and that there is no mass exchange across the
interface. Hence, the velocity field at the free surface
is continued.

2.3  Initial and Boundary Conditions
The initial condition considered is still water with

no wave or current motion. The following boundary
conditions are considered when solving the above
mentioned transport equations:

* For the free surface boundary condition, the nor-
mal stress is imposed by setting the pressure P
equal to the atmospheric pressure Patm (P = Patm).

* For open boundary condition, a dissipation zone is
added in order to avoid wave reflection at each
end. Within such zone it is advantageous to consid-
er, in addition to the damping friction force, a
numerical dissipation by applying coarse grids in
the dissipation zones. The Neumann boundary con-
dition is specified at the end of each dissipation
zone.

To generate numerically a given wave, based on the
2-D Navier-Stokes equations, the source region pro-
posed by  (Lin et al. 1999) is transformed to source
line method (Fig. 1).

Since source region is reduced to a source line, the
mass flux per unit time is imposed in terms of vertical
velocity wI (t) at the bottom of the internal inlet. The
mass source term in the transport equation is then con-
sidered as a time dependent inlet boundary condition.

2.4  The Internal Inlet Velocity
Following to (Hafsia et al. 2009), the wave is gen-

erated on horizontal source line with vertical pulsating
velocity wI (t). The expression of wI (t) at the source
line is given by the following time dependent bound-
ary condition:

(6)

Where Ls is the length of the internal source line.
Using this transformation, the mass source region

is modeled as an internal inlet imposed at the bottom
of the control cell. The velocity wI (t) is upward or
downward following that the mass is added wI (t) > 0)
or subtracted (wI (t) < 0).  

The specified internal inlet velocity depends on the
desired free surface wave profiles such as linear mono-
chromatic wave or nonlinear solitary wave. Assuming
that the source line is located at xs = 0, the free surface
elevation is function only of the time t.

For solitary wave, we have:

(7)

(a)

Source
region

(b)

Source
line

wI

LS

Figure 1.  Internal     source   for   wave   generation;
(a) The   source  region   method proposed
by  (Lin et al. 1999);  (b)   The  horizontal
source   line  method  proposed by (Hafsia 
et al. 2009)
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H: wave height; and C the wave celerity given by:

(8)

The parameter k is given by:

(9)

The wavelength of a solitary wave is theoretically
infinitely long. However, for practical purposes we
can define an arbitrarily wavelength as:

(10)

The apparent wave period is defined by the follow-
ing ratio:

(11)

The distance xn is introduced to make the free sur-
face elevation negligible at the initial time and is given
by:

(12)

3.  Results and Discussions

3.1  Introduction
Two source lines were introduced within the com-

putational domain to generate solitary waves propagat-
ing in constant depth (Fig. 2). Several analytical solu-
tions are suggested in the literature for the head-on

According to  Ming et al. (2003) experiments, two
solitary waves were considered with different ampli-
tudes of  H1 = 5.70 10-3 m (left wave) and H2 = 5.43

10-3 m (right wave). The still water depth is d = 5.00
10-2 m. The horizontal distance between the two
source lines for generating these waves is S12 = 2.00
m.  In horizontal direction, the left source line is locat-
ed at S1 = 6.03 m and the right source at S2 = 8.03 m.
These two sources were located at the same elevation
from the bottom ds = 0.6 d.  The computational domain
is discretized into uniform mesh in horizontal direction
with  x = 2.50 10-2 m.  The minimum grid size in ver-
tical direction  are  chosen  near the free surface  z =
4.03 10-4 m. The time step is  t = 1.33 10-2 s.

3.2  Waves Generation
In order to explain the solitary waves generation,

Fig. 3 illustrate the free surface profiles for different
times.  At t = 0 the free surface is horizontal due to that
the internal inlet velocity is equal to zero.  At t = 0.4 s
(Fig. 3a), a small free surface elevation is noted.
Indeed, the internal source perturbation became more
influential (Figs. 3b and 3c).  At t = 0.71 s (Fig. 3d),
the two waves have remarkable shapes.  After t =
0.52 s, the free surface reaches the maximum of ampli-
tude for the two source lines, the potential energy is
maximum (Fig. 3e). After this instant, the solitary
waves separation can be observed (Figs. 3f to 3h).  At
t = 1.400 s, each source line will generate two solitary
waves propagating in opposite directions denoted:
W1L and W1R for the source S1 and W2L and W2R
for the source S2.

The generated four solitary waves (Fig. 4) are in
accordance with the analytical solutions (Svendssen
2006).

3.3  Head-On Collision 
A sequence of spatial profiles during collision of the

two counter-propagating solitary waves is shown in
Fig. 5.  The free surface profiles between the times of
t = 1.505 s and t = 1.806 s  (Figs 5a to 5d) represent the
waves propagation before collision. The numerical
and experimental results are in a good agreement
except some observed discrepancies. For the same
head-on collision configuration, based on Euler equa-
tions, the differences between the predicted results
given by (Hammack et al. 2004) and experimental
data are attributed to the viscous effects and the preci-
sion of experimental measurements. 

At t = 2.307 s, the two solitary waves propagating
in opposite directions (W1R and W2L) are merged
into a unique wave (Fig. 5e).  At this instant, the poten-
tial energy is maximum (the vertical velocity is negli-
gible), the merging wave seems to be at rest and has a
maximum amplitude higher than the sum of both
incoming waves. Numerical simulation show that the

Figure 2.  Computational   domain  and   positions of
the  two  source  lines introduced to study
the   collision  of two  solitary   waves  at   
constant water depth
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Figure 3.  Free  surface  profiles  of  generated  waves  at  different   times:  a) t = 0.40 s;  b) t = 0.47 s; c) t = 
0.52 s; d) t = 0.71 s; e) t = 0.92 s; f) t = 1.00 s; g) t = 1.08 s; h) t = 1.28 s
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Figure 4.  Comparison    between    analytical   (ooo) 
and   numerical   free surface   profiles (--) 
for   the   two  solitary  waves    W1R  and 
W2L before collision (t = 1.40 s)

Figure 5.  Comparison  between   experimental (ooo)
during  the   head-on collision at  different   
times:  a)  t = 1.505 s;    b) t = 1.603 s;  c) 
t = 1.705 s; d)   t = 1.806 s;  e) t = 2.307 s 
(maximum   of    run-up);   f) t = 2.605 s;
g)  t = 3.004 s; h) t = 3.505 s
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tary wave at vertical wall is investigated by the source
line method. 

The wall is located at x = 0, the incident solitary
wave located far away the wall, is assumed to propa-

The solitary wave considered has an amplitude of
H = 2 10-2 m. The still water depth is h = 2 10-1 m.  In
horizontal direction, the source line is located at La =
5 m from the vertical wall. The source was located at
an elevation from the bottom hs = 0.5h. The computa-
tional domain is discretized into uniform mesh in hor-
izontal direction with  x = 3.125 10-2 m. The mini-
mum grid size in vertical direction are chosen near the
free surface z = 1.1 10-3 m. The time step is  t =
1.19 10-2 s. 

Figure  8  represents  the reflected wave profile at
t = 6.88 s, the reflected wave retrieve its initial shape
with small loss of amplitude. In fact, after reflection
the solitary wave loses energy to a dispersive wave
train and loses height, so ultimately the speed of the
reflected wave is smaller than before collision.

Spatial profiles during reflection of the solitary
wave  at   a  vertical  wall are shown  in Fig. 9.  From  
t = 4.74 s to t = 5.17 s (Figs. 9a to 9d), the wave run-
up due to the kinetic energy reduction is observed.
Once the wave crest reaches the wall, the reflection
does not occur immediately as predicted by the classi-
cal linear wave theory. The wave crest remains at the
wall for a certain time, called the phase delay, to com-
plete the reflection process.  During this time delay,
the wave amplitude continues to increase. The maxi-
mum run-up which is twice greater than the initial
wave amplitude is reached at t = 5.31 s (Fig. 9e). From
this instant to t = 6.02 s (Figs. 9f to 9j), the wave
amplitude starts to decrease and the wave begins to
move away from the wall and propagates in the posi-
tive x direction. The numerical profiles agree fairly
well with numerical free surfaces profiles given by
(Power et al. 1984). 

Conclusions

We have studied the head collision of two solitary
waves with almost equal amplitudes by two internal
mass source lines. Each source line will generate two
solitary waves. The comparison with analytical non
linear wave solution shows that the solitary waves are
accurately generated. Between the two source lines,
the two counter-propagating solitary waves are
merged into a unique wave with an amplitude higher
than the sum of both incoming waves. The Navier-
Stokes solution of the maximum wave run-up is
almost equal to experimental measurements. After
merging, the two separated solitary waves show small
differences between their initial amplitude and the
simulated one. These differences are attributed to sec-
ondary waves. Since the system of two head-on collid-
ing waves is equivalent to a single solitary wave hit-

hs

Figure 6.  Computational   domain    and  position of
the  source  line  introduced  to  study  the

Figure 7.  Comparison    between   numerical  results
given  by  (Power et al. 1984)  (ooo)  and
free surface profiles ( ) before the  refl-
ection  of  a  solitary  wave  at  vertical 
wall; t = 4.02 s

Figure 8.  Comparison   between   numerical   results
given  by  (Power et al. 1984)  (ooo)  and
numerical   free s urface profiles ( ) fter 
the   reflection   of   a   solitary  wave   at
vertical wall; t = 6.88 s
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Figure 9.  Comparison   between  numerical  results  given  by (Power et al. 1984)  (ooo)   and  numerical free
surface  profiles  ( during  the  reflection  of  a solitary  wave  at  vertical  wall at different times;
a) t = 4.74 s;  b) t = 4.88 s; c) t = 5.02 s;   d) t = 5.17 s;  e) t = 5.31 s;  f) t = 5.45 s;  g) t = 5.60 s; h)
t = 5.74 s; i) t = 5.88 s; j) t = 6.02 s



18

CFD Analysis of Water Solitary Wave Reflection

ting a vertical wall, this problem is also treated in this
study; using one source line for wave generation.
Compared to numerical results given by (Power et al.
1984), the simulated results are considered satisfacto-
ry.  As a perspective of this study, we can investigate
the head-on and co-propagating collision of solitary
waves with unequal amplitudes. Also the superposi-
tion of other wave types can be treated by this source
line generation method.
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