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Abstract: In this paper, a neural network approach for the identification and control of a separately excited direct
(DC) motor (SEDCM) driving a centrifugal pump load is applied. In this application, two radial basis function neu-
ral networks (RBFNN) are used: The first is a RBFNN identifier trained offline to emulate the dynamic performance
of the DC motor-load system. The second is a RBFNN controller, which is trained to make the motor speed follow
a selected reference signal. Two RBFNN control schemes are proposed using direct inverse and internal model con-
trol schemes. The performance of the RBFNN identifier and controller is investigated in terms of step response,
sharp changes in speed trajectory, and sudden load change, as well as changes in motor parameters. The perform-
ance of RBFNN in system identification and control has been compared with the performance of the well-known
back-propagation neural network (BPNN). The simulation results show that both of the BPNN and RBFNN con-
trollers exhibit excellent dynamic response, adapt well to changes in speed trajectory and load connected to the
motor, and adapt to the variations of motor parameters. Furthermore, the simulation results show that the step
response of RBFNN internal model and direct inverse controllers are identical.

Keywords: DC motors, Identification, Neurocontrol, Neural network
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1. Introduction

Direct current (DC) motors have been extensively
used in automation systems because of their favorable
torque and robust speed control characteristics.
Examples of DC motor applications in industry
include their use in robotic manipulators, automation
systems, steel manufacture, paper processing and min-
ing industries. DC motors are customarily modeled
linearly to enable the application of linear control
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theory in controller design. However, most of the
existing linear controllers generally do not lead to
good tracking and regulation responses when the con-
trolled system is subjected to wide range of operating
conditions (Krishnan 2001).

Controllers are often required to be sufficiently
robust in the presence of indeterminate variations in
the system parameters. A widely used control tech-
nique is the application of proportional-integral-deriv-
ative (PID) controllers, where control actions are
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obtained by pre-tuning the controller's parameters in
order to obtain the minimum output error of the con-
trolled system. However, these types of PID con-
trollers possess poor transient response and provide
insufficient robustness with respect to variations of the
parameters of the system under control (Kuo 2003;
Anderson 1993). On the other hand, adaptive control
strategies have been shown to offer advantages over
classical feedback control methods as they can esti-
mate the parameters of a controlled system and modi-
fy a controller online to meet the desired system per-
formances (Sastry and Sidori 1989). Adaptive con-
trollers, however, are complex, highly mathematical,
and costly to implement. They also involve extensive
computations and lengthy processing times. These
constraints limit the applications of the adaptive con-
trol strategies.

With the emerging development in artificial intelli-
gence applications, neural networks (NNs) have been
used in identification and control of linear and nonlin-
ear systems (Hagan et al. 2002; Narendra and
Parthasathy 1990; Chen and Billings 1992; Rivals and
Personnax 2000; Haykin 1994). NN is considered an
attractive tool to establish the mathematical relation-
ship of the dynamic system based on the input output
data. A large number of architectures and algorithms
for identication and control using NNs were proposed
by Chen and Billings (1992). It has been shown that
feedforward NNs with one hidden layer can uniformly
approximate any continuous function within a pre-
specified accuracy (Haykin 1994). The trained NN
can model the behavior of the system in the forward or
inverse mode of operation. The main advantage of
NN-based techniques over conventional techniques is
the non-algorithmic parallel-distributed architecture
for information processing that allows it to learn any
complex input-output mapping (Haykin 1994).

Most of the research in the identification and con-
trol of DC motors is concentrated on using feed for-
ward NNs with back propagation training, referred to
as back propagation neural networks (BPNNs)
(Weerasooriya and Elsharkawi 1991; Veeracharry and
Yadaiah 2000; Rubaai and Kotaru 2000; Jun and Gi
2000; Hunt et al. 1992; Tipsuwanporn et al. 2002;
Hissein et al. 2003, Berrospe et al. 2009; Peng and
Dubay 2011; Sudarsan et al. 2011). In fact, there are
several problems associated with these networks.
First, BPNNs are prone to getting stuck in local mini-
ma on the error surface, giving a solution that is not
optimal. Second, BPPNs have a relatively slow con-
vergence rate, thus causing computation time for train-
ing such networks with a large number of parameters
to be very long. Finally, it is difficult to determine a
minimal but adequate architecture that minimizes
training time and optimizes generalization as well.

Radial basis function NN (RBFNN) is another type
of feed forward neural network that has universal

approximation abilities. Unlike the BPNN, RBFNN
has the best approximation property. It has been
acknowledged that approximation accuracy properties
of RBFNN are advantageous as compared to the other
methods. Even more important for many applications,
the RBFNNSs provide linear approximation in the net-
work weights. This feature makes powerful tools of
the linear system theory applicable to the RBFNN
identification of nonlinear systems. The "linear in
parameters" of the radial basis functions guarantees
the convergence of the parameters to the global mini-
mum. Furthermore, RBFNNs are not as sensitive to
the architecture as BPNNs (Al-Moudi and Zhang
2000; Shen et al. 2002; Park and Sandberg 1993;
Sundarajan 1999; Poggio and Girosi 1990).

In this paper, the effectiveness and robustness of
RBFNNs in identification and control of a SEDCM
driving a centrifugal pump is investigated. Two
RBFNN-based controller schemes are applied to con-
struct a robust controller. One of these schemes is the
direct inverse RBFNN cascaded controller that repre-
sents the inverse model of the system. The other
scheme is the internal model RBFNN controller that
uses both forward and inverse models. The perform-
ance of the proposed RBFNN control schemes will be
compared to that of the BPNN schemes.

This paper is organized as follows. Section 2 pres-
ents the system under study (SEDCM) and illustrates
the discrete mathematical modeling of the system. In
section 3, the concept of a NN-based system identifi-
cation and control is reviewed. Section 4 gives a brief
review of the RBFNN for nonlinear system modeling
and describes its architecture and training. RBFNN
training and testing of the proposed identification and
control structures are presented in section 5. Finally,
drawn conclusions are stated in section 6.

2. Mathematical Model of the SEDCM

In a SEDCM, the speed can be controlled smooth-
ly over a wide range by adjusting either the armature
voltage or the field current. Speed control ranging
from zero to nominal speed can be obtained by arma-
ture voltage control, while speed control above nomi-
nal value can be achieved by flux weakening at con-
stant power output. This paper focuses on armature
voltage speed control at constant flux (Krishnan 2003;
Kuo 2003). The dynamics of the SEDCM, Figure 1,
are described by the following electrical and mechan-
ical differential equations:

LAch—A=—iARA—K0)+VA (1)
dt
do . )
ngKZARA_Bw_TL
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Where v, is the motor input voltage; i, is the arma-
ture current; @ is the rotor speed; 77 is the load torque;
R, is the armature resistance; L , is the armature induc-
tance; J is the motor rotational inertia; B is the damp-
ing constant; and K is the torque or EMF constant.
The name-plate values and parameters of the motor are
given in the appendix.

J, B

Figure 1. Electrical schematic of a SEDCM

Using first- and second-order finite-backward dif-
ference approximation for dx/dt and d?x/dt? respec-
tively, the finite difference equation that governs the
discrete-time dynamics of the SEDCM is given by
(Rubaai and Kotaru 2000):

o(k)=av(k)+ pao(k-1)+00(k-2)+0I; (3)

where a, f, 6, and @ are constants with values that
depend on the sampling time interval A7 and motor
parameters as well as given by (Sastry 1989; Chen
and Billings 1992):

KAT? @
o=
ATZ(RAB+K2)+AT(RAJ+LAB)+LAJ
AT(R4J +L4B)+2L (J
B=—3 2 (5)
AT (R B+ K2 )+ AT(R 4 + L yB)+ L 4T
~L,J
5:
AT (RyB+ K2 )+ AT(R 4T +LyB)+LyJ  (6)
p —R,AT?

B Ar* (R, B+ K2+ AT(R I +LyB)+ 1,0 7

3. Neural System Identification and Con-
trol

3.1 Neural System Identification

System identification is the process of developing
a mathematical model of a dynamic system based on
sampled input and output data from the actual system
(Narendra and Parthasarathy 1990). An advantage of

system identification is evident if the process is
changed or modified. System identification allows the
real system to be altered without having to calculate
the dynamical equations and model the parameters
again. For linear time-invariant systems with
unknown parameters, the generation of identification
models is well established (Narendra and
Parthasarathy 1990). For a single-input single-output
(SISO) system, the system can be represented as:
n-1 m—1
yk+1)=Ya;y(k—i)+ ¥ Bu(k—-j) ®
i=0 =0
where ¢; and f; are constant unknown parameters.
This implies that the output at time k£ + [ is a linear
combination of the past values of both the input and
the output. Equation (8) motivates the choice of the
following identification models:

Parallel model:

. n-1 om-l .
y(k+1)= ,ZOO!iy(k—l)Jr Zoﬁju(k—J) ©)
i= J=

Series-parallel model:

;(k+1)=f’i]()ziy(k—i)+’f’z_lﬁ_,u(k—j) (10)

i=0 Jj=0

where «; (i=0,1, ..., n-1) and ﬂj G=0,1, .., m

1) are adjustable parameters. In the parallel
identification model the output at time & + 1 is
p(k+1)and is a linear combination of the past values

of the model p(k—i) as well as those of the input.

On the other hand, the output of the series-parallel
identification model p(k +1) is a linear combination

of the past values of the input and output of the
system y(k—i) . Different learning algorithms have

been suggested for the adjustment of the parameters
of the identification models.

Motivated by the models which have been used in
the adaptive systems literature for the identification
and control of SISO linear systems, four identification
models were proposed in (Narendra and Parthasarathy
1990) for the identification and control of nonlinear
systems. For the reader convenience, the four models
that describe a discrete-time system by nonlinear dif-
ference equations are introduced:

Model I:
n-1 , u(k),
y(k+1):aniy(k_l)+g{u(k—1),...,u(k—m+1)}
(11)
Model II:
y(k+1)= (k) y(k=1),...y(k=n+1)] a2

-1
+ X Bu(k—i)
i=0
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Model II1
y(k+1) = fy(k), y(k =1),..., y(k —n+1)]+

glu(h),u(k =1)....,u(k —m+1)] (13)
Model IV:
),y =1 y(k =+ 1); (14)
ykEh =1 u(k),u(k—l),...,u(k—m+1)}

where [u(k), y(k)] represents the input-output pair of
the SISO system at time &, and m < n. In all four mod-
els, the output of the plant at the time k+/ depends
both on its past n values y(k-i) i =0, 1, ..., n-1) as
well as on the past m values of the input u(k-j), (j =0,
1,..., m-1). The dependence on the past values y(k-i) is
linear in model I, while in Model II the dependence on
the past values of the input u(k-j) is assumed to be lin-
ear. In Model III, the nonlinear dependence of y(k+1 )
on y(k-i) and u(k-j) is assumed to be separable. It is
evident that Model IV in which y(k+1) is a nonlinear
function of y(k-i) and u(k-j) subsumes Models I-III.

Former studies in system identification have demon-
strated that NNs are successful in modeling both linear
and nonlinear systems (Narendra and Parthasarathy
1990; Chen and Billings 1992; Rivals and Personnaz
2000; Haykin 1994; Weerasooriya and Elsharkawi
1991; Veerachary and Yadaiah 2002; Rubaai and
Kotaru 2000). A NN-based system identification
involves the following design considerations: select-
ing process excitation signal, choosing data sample
time, selecting NN architecture, and testing the result-
ing model. The most common method of NN identifi-
cation is called forward modeling using either the
series-parallel identification model as shown in Figure
2, or the parallel identification models of Figure 3.

System
wk+1)

e(k+1)
-

u(k)

y(kt1)

=P| Network

N\

Figure 2. Series-parallel identification model

Wk+1)

System
+
u(k) e(k+1)
e p. 4 —>
/N(aﬁl .

\ 4

y(kt1)

Figure 3. Parallel identification model

The attempts to model the mapping of system input
to output. The purpose is to find a NN with response
¥ that matches the response y of the system for a
given set of input u received by both the system and
the NN. The error e is minimized during network
weight adjustment. This is an example of supervised
learning, where the teacher (system) provides target
values for the learner (NN).

The performance of the NN model is tested by cal-
culating the MSE. The MSE gives a good indication of
the accuracy of the NN model. The MSE between the
NN model and the system should be low. The output
from the NN model and system is plotted to compare
the dynamics.

3.2 Neural System Control

The basic objective of system control is to provide
the appropriate input signal to a given system to yield
its desired response. If the actuating signal at the input
to the system is generated by a NN-based controller,
then it is termed neural control, or neurocontrol (NC).
NN uses multilayer feed forward architecture and
implements the mapping of the plant inverse.

NC has been defined as using a well-specified NN
to emit actual control signals. Thus, a controller is
designed to control a system according to the desired
set-points which will involve some intelligence. NC
has gained widespread acceptance because it can be
trained to learn any function eliminating the need for
complex mathematical analyses. Using activation
functions allows nonlinear mapping ability for solving
nonlinear control problems. Moreover, the massive
parallelism of NNs offers very fast multiprocessing
technique that could be implemented in neural chips.
Neurocontrollers are also able to perform well under a
wider range of uncertainty. In this paper, neurocontrol
structures that have direct reliance on system forward
and inverse models are adopted. Accordingly, two con-
trol structures have been applied, namely, direct
inverse control (DIC) and internal model control
(IMC).

3.3 Direct Inverse Control Scheme

DIC modeling is utilized to generate the inverse of
the system. Contrary to the supervised control, inverse
control does not require an existing controller in train-
ing. The principle of the DIC is that if the system is
described by:

y(k),...,y(k—n+1),j (15)

k+1)=
yk+1) g(u(k),...u(k—m+1)

A NN is trained to perform as the inverse of the
process:

y(k+1),y(k),...,y(k—n+1),j 16)

C Al
utk)=¢ (u(k—l),...u(k—m)
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u(l) System | Y6*1)
SEDCM
+
e(h)
«
NNSEDM
Inverse Model 4
D~

NN
SEDCM
Inverse
Model

u(k) System Wk+1)

SEDCM

v

Figure 5. Direct inverse control (DIC) scheme

Figures 4 and 5 show an example of NN-DIC. A
NN is trained to identify the inverse of the system
(Narendra and Parthasarathy 1990). The SEDCM) out-
put is used as an input to the NN inverse identifier. The
NN output is compared with the training signal (the
system input), and the error signal is used to train the
NN. This training method will force the NN inverse
identifier to represent the inverse of the system. In a
DIC scheme, the NN inverse identifier plays the role
of the controller when cascaded with the system. In
this scheme, the input of the controller is y,; which is
the desired output of the system, and the actual output
of the combined system is equal to the desired output
v, if the NN inverse model accurately represents the
inverse of the SEDCM as shown in Figure 5. The
inverse nonlinearities in the controller cancel out the
nonlinearities in the system. The advantages of the NN
controller is if an uncertainty in the system occurs, the
NN will be able to adapt its parameters and maintain
control of the plant when other robust controllers
would fail.

3.4 Internal Model Control Scheme

IMC is based on DIC modeling. A NN forward
identifier model is placed in parallel with the real sys-
tem. The controller is an inverse model of the system
as shown in Figure 6. With the IMC scheme, the aim
is to eliminate the unknown disturbance affecting the
system. The difference between the system and the NN
model d(k), is determined. If the NN forward model is
a good approximation of the system, then the error d(k)
is equal to the unknown disturbance. The disturbance
d(k) is the information that is missing from the NN
model and can be used to improve the control. The dis-
turbance d(k) is subtracted from the input reference
¥4 resulting in perfect control.

3.5 Excitation Signal
A system excitation signal is used to generate input-

NNContmoller k) System V&)
Inverse Model SEDCM

NN
Forward Model

Figure 6. Internal model control (IMC) scheme

output system data which contain sufficient informa-
tion for a NN to identify the system dynamics over the
entire operating range. A NN should be trained with
dynamically rich data which covers a wide range of
the system operating region. The trained NN is provid-
ed with the sequence of recent output of the system in
addition to present system output. A random ampli-
tude signal is commonly used as the system excitation
signal to generate an open loop data for network train-
ing. This signal consists of a uniformly distributed ran-
dom variable applied to the system input.

4. Radial Basis Function Neural Network

Over the past decades, NNs have received great
attention among scientists for solving some complex
engineering problems for which conventional
approaches have proven ineffective (Al-Moudi and
Zhang 2000; Shen et al. 2002; Park and Sandberg
1993; Sundarajan 1999). In particular, RBFNNs have
universal approximation ability. Comparing with
BPNNs, the RBFNNs have some better approximation
properties, such as high accuracy of approximation,
especially, the connection weights from the hidden
layer to the output layer are linear (which implies that
linear optimal algorithms can be used in RBFNNs and
guarantee the global convergence of the parameters).
Moreover, while training RBFNNSs, only one part of
the nodes is affected by a given input, and only a por-
tion of the parameters may need to be adjusted, thus
reducing the training time and computational burden.

A RBFNN has an input layer, nonlinear hidden layer
with RBF units, and a linear output layer. The nodes
within each layer are fully connected to the previous
layer nodes. The input variables are each assigned to
nodes in the input layer and connected directly to the
hidden layer without weights. The nodes calculate the
Euclidean distances between the centers and the net-
work input vector, and pass the results through the

Figure 7. Radial basis function neural network archi-
tecture
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RBF units. The output layer nodes are weighted linear
combinations of the hidden layer. The structure of a
RBFNN with m inputs, p outputs and N hidden nodes
is depicted in Figure 7.

For a RBFNN with m iput nodes, p output nodes
and N hidden nodes, the hidden unit can be expressed
as a matrix @ =[¢, ¢ ¢y] and NN weight

vector W={wij,izl,Z,n-N,j:1,2,~--p}, where
xu(k)]", the
5p®)", and

is a nonlinear Gaussian activation

the input vector is X (k) =[x; (k)
output vector is Y(k)=[3(k)
¢, (X (k)

function:

b;(X(k)=exp(| X(k)=C; I [o;) (D
where C/’ (= 1,2,...,N) is the vector of centers of the jth
hidden unit with the same dimension as the input vec-
tor X(k), o; the width of the j* RBF hidden unit, and
|lo|| is the Euclidean norm. The i#» RBF network out-

put can be represented as a linearly weighted sum of N
basis functions:

A N .
Yi(k)=woi+ X w;i¢;(X(k)), i=L2,--.p (18)
=

where w;; and w,, are the weights, w,, is used to com-
pensate for the difference between the average value
over the data set of the RBF activation and the corre-
sponding average value of the target outputs (Al-
Moudi and Zhang 2000). With the structure described
above, the transformation from the input layer to the
hidden layer is nonlinear, due to the use of Gaussian
functions ¢(e) for RBF, and the connection of the hid-
den layer to the output layer is linear.

Before the NN can be employed to yield the
desired outputs, the weights must be determined. The
process of determining the weights is called the
training (or learning) process. In the training process,
a set of input pattemns is presented at the input along
with the desirable output patterns. Weights in the
network are then adjusted such that an error measure
(the difference between the desired output y; and the
actual outputs of the network y ;) is minimized. In

this paper, the criterion of training a RBFNN is to
minimize the MSEs:

1 .
MSE=—2>33\yi(k)-y;(k
N jk(y,( )-5;0k) f (19)
where N, is the number of training patterns, and y,(k)

and J;(k) denote the desired and model output at

the kth sample points. The weights w; can be
determined by using the least-squares (LS) method
after selecting suitable values for the spread and
centers of the radial Dbasis function. Random

selection of fixed centers is adopted in this paper.
The training of the RBFNN is terminated when an
MSE goal value is achieved.

5. Simulation Results

In this paper, an artificial NN approach has been
applied to the identification and control of the
SEDCM. A discrete mathematical model representing
the SEDCM as described by Anderson (1993) was
developed in Matrix Laboratory (MATLAB). The
mechanical load is assumed to be a centrifugal pump
with a load characteristic given as:

7,=0.001w’ (k1) (20)
5.1 Generation of the NN Input-Output Train-

ing Patterns

The MATLAB was used to perform the training and
simulation of the system under study. Input-output
training sampled data of 6000 patterns, containing suf-
ficient information for a BPNN or RBFNN to identify
the SEDCM dynamics over the entire operating range
were generated using uniformly distributed random
amplitude/ frequency voltage signals as shown in
Figure 8. Each input-output pattern consisted of 3
input samples and one output sample. The input-out-
put training data samples were obtained at sampling
time A7 = 1 minutes. Figure 9 shows the speed
response of the discrete model of the SEDCM to a

ranom input voltage.
ik

i
3000 4D00
Sarmple Number

It Viage (V)

00

Figure 8. Random amplitude/frequency input volt-
age signal

Traini ng Data

;

Ouipat Speed {rads )

i i
3000 4D00 5000 5000 7000
Sample Number

Figure 9. Motor speed response for random input
voltage signal

5.2 Training the BPNN and RBFNN lIdentifica-
tion Models
For identification purpose, the series-parallel model,
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as shown in Figure 2, was used to model the SEDCM
which is governed by the difference Eqn (3). The
trained NN was provided with a random sequence of
input voltage in addition to the past output values of
the motor speed. The input vector of the NN identifier
can be rewritten as:

X(k)=[v (k) @k -1) @k -2)], and the only
output of the NN identifier is the identified motor
speed (k).

For the BPNN, the batch mode training with the fast
Levenberg-Marquardt back propagation (LMBP)
algorithm was selected for weights adjustment
(weights and biases were only updated after all of the
inputs and targets were presented). It was found that
the number of hidden neurons and their sensitivity to
initial weights are the two main factors that affecting
the performance of the LMBP algorithm and might
lead to convergence to local minima. Different BPNN
architectures were investigated to obtain the best per-
formance as shown in Table 1. It was found that an
architecture of 3-5-1 gives excellent performance in
the shortest training time with a MSE of =2.2 108,

Table 1. Performance of the BPNN system identi-

fier
# Hidden Neuron # Epochs MSE
5 10000 2.2x10°%
7 10000 73x10”
10 10000 1.6x10”

Likewise, the training of a RBFNN identifier is
accomplished in two stages. At first, the centers and
the measure of spread (o) were selected randomly.
Then a direct inversion matrix training algorithm was
applied to obtain the weights vector. Different network
structures were examined. The number of hidden units
was determined through trial-and-error. Based on sat-
isfying the minimum MSE and the shortest training
time, the optimal number of hidden neurons was found
to be 4. Table 2 shows the performance of the RBFNN
model in terms of the MSE as affected by the number
of hidden neurons and the value of o.

Table 2. Performance of the RBFNN system identi-

fier
# Hidden Neuron o MSE
4 0.03 1.69x10°°
7 024 1.59x10°°
10 0.42 1.10x10°°

The speed responses for a 3-5-1 BPNN identifica-
tion model with an MSE = 2.2 x 10-8 and a 3-4-1
RBFNN identification model with an MSE = 1.69 x
10-9 are depicted in Figure 10. It can be seen in Figure
10 which illustrates an exact fit between the SEDCM
and each of the BPNN and RBFNN identifiers.

o |
=1 "/\ Y
u§§§ ‘ j\/ ta /ﬂu} \N\

. } e g

Sample Number

Figure 10-a. SEDCM identification using 3-5-1
BPNN model

uuuuu | Vs desiond

| | | [ ' |: ,-I |1 [ )
| | ! [] v+ LA
ot || |I | | | I'.I. _,I

Outpet Spaed jrad’s)
2 B

L 1 " L L L
1000 2000 000 4000 S 000 7000
Sample Number

Figure 10-b. SEDCM identification using 3-4-1
RBFNN model

5.3 Validating the BPNN and RBFNN Identifi-
cation Models

The adequacy and generalization capabilities of the
trained NN identification models were subjected to
model validity test by using a validation signal of a
different magnitude range and/or clock period of the
random amplitude excitation signal. The SEDCM
model along with each of the BPNN and RBFNN
identification models were subjected separately to a
random input voltage excitation signal with 1800 sam-
ples and the difference between the outputs of two
models were used to calculate the MSE. The general-
ization performance of the BPNN and RBFNN identi-
fiers with an MSE = 2.4 x 10 and an MSE =3.9 x
10-5 are demonstrated in Figure 11-a and Figure 11-b,
respectively.

5.4 BPNN and RBFNN Inverse Models of the
SEDCM

Figure 4 displays the NN inverse model structure
of the SEDCM, where the input voltage is the desired
output of the NN inverse model. The NN inverse
model is trained using 6000 input-output training pat-
terns. Each pattern consists of 3 input samples repre-
senting the speed, and one output representing the
desired input voltage. Several BPNN and RBFNN
architectures were investigated. A BPNN inverse
model with a 3-5-1 architecture and a RBFNN inverse
model with 3-5-1 architecture were found very satis-
factory. The performance simulations of both of the
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AN /\
j/ \/

Qutput Speid (radfs)

BPNN Model

SEDCM Model

MSE=2 378e-4

D ‘800 1000 1200 1400 1600
s ample Mumber

Figure 11-a. Validity of 3-5-1 BPNN model, MSE =
2.4 x 104,

REFMNN Model

120) / —-—- SEDCM Model |

MSE=39e-5

5/\/ N

PR
nzmmsmemmmmm‘mtsmuem
Sample Number

Figure 11-b. Validity of 3-4-1 RBFNN model,
MSE =3.9 x 10-.

Table 3. Performance measures of the BPNN and
RBFNN DIC schemes

Output Speed fradfs)

bIc Maximum  Rise Settling Steady
NN overshoot time time State
Model Error
BPNN 146.9
(22.42%) 0.156s 0.705 s 0.0
RBFNN 146.6
(22.17%) 0.155s 0.702 s 0.0

BPNN and RBFNN inverse identification models for a
random input voltage are illustrated in Figures 12-a
and b, respectively. The responses of both NN inverse
models accurately fit the desired random input voltage
of the SECM. The performance simulations of the
BPNN and the RBFNN as neural controllers in both
DIC and IMC schemes are presented in section 5.

5.5 Performance of Direct Inverse Control

(DIC) Scheme

The dynamic performance for the proposed BPNN-
and RBFNN-DIC schemes are evaluated in terms of
the step response measures as depicted in Table 3 and
Figure 12. It can be seen that the both BPNN and
RBFNN inverse models schemes were able to track
the step response of the motor with zero steady-state
error.

The dynamic performance of the BPNN-DIC and
RBFNN-DIC schemes following changes in the
desired speed, change of motor load and variation of
motor parameter (inductance) is investigated as shown

MNeural ¥'s Desired MSE=8.31 1-5

od
120} —— BPNN Output |
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5 8 8
=
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Figure 12-a. Performance of 3-5-1 BPNN inverse model
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Figure 12-b. Performance of 3-5-1 RBFNN inverse
model
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Figure 13-a. Step response of the BPNN-DIC scheme
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Figure 13-b. Step response of RBFNN-DIC scheme

in Figures 14-16, respectively. Examining Figures 14-
16, it can be seen that the developed BPNN-DIC and
RBFNN-DIC schemes exhibit identical excellent step
responses and adapt well to sharp instantaneous
changes in speed trajectory, sudden changes in con-
nected loads, and variation of motor parameters.
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Figure 14-a. BPNN-DIC scheme response following
a speed change
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Figure 14-b. RBFNN-DIC scheme response follow-
ing a speed change
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Figure 15-a. BPNN-DIC scheme response following
a sudden load change
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Figure 15-b. RBFNN-DIC scheme response follow-
ing a sudden load change

5.6 Performance of IMC Scheme

The IMC scheme for the SEDCM was implement-
ed in this paper by connecting the forward NN and
inverse NN models as shown in Figure 6. In this
study, the RBFNN models were implemented as it was
found that the performance of the RBFNN-IMC
scheme is exactly identical to that of the BPNN-IMC
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Figure 16-a. BPNN-DIC scheme response following
a parameter change
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Figure 16-b. RBFNN-DIC scheme response follow-
ing a parameter change
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Figure 17. Step response of the
scheme

RBFNN-IMC

scheme. The forward RBFNN model of the SEDCM is
placed in parallel with the discrete model of the
SEDCM. The difference between the outputs of the
discrete and forward models is used to subtract the
effect of the control signal from the system output. The
step response of the RBFNN-IMC scheme is shown in
Figure 17. As can be seen, the dynamic behavior of
the RBFNN-IMC scheme is identical to that of the
RBFNN-DIC scheme as illustrated in Figure 13. This
can be attributed to the high accuracy of the NN
inverse model of the SEDCM.

6. Conclusions

In this paper, a RBFNN approach for the identification
and control of SEDCM with nonlinear load character-
istics is presented. The performance of RBFNN for
off-line identification and control of SEDCM had been
compared with the well-known BPNN. For accurate
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forward and inverse identifications, choices of the
proper system excitation signal, data sampling time,
and neural network model structure are investigated by
time-domain simulations. Cross-validation test is also
applied on the NN identification models. Two neuro-
contrllers using direct inverse and internal model con-
trol schemes are used. The simulation results have
shown that both the RBFNN controller and the BPNN
controller exhibit excellent performance. However,
the RBFNN model is simpler to implement and faster
to train than the BPNN model. The simulation results
have also shown that RBFNN, with small number of
hidden neurons, can be effective in designing robust
neurocontrollers of SEDCM with excellent dynamic
behaviors. The robust neurocontrollers are not affect-
ed by the changes in load torque, motor parameters or
instantaneous changes in speed trajectory. Both IMC
and DIC exhibited identical dynamic behavior.
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