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Abstract: Hydraulic expansion of submerged tubes is accomplished by propelling a mandrel through it
using differential pressure. This process deforms the tube beyond its elastic limit. Toward the end of the
expansion process, the mandrel pops out of the tube resulting in displacement, stress, and pressure waves
propagating through the system.  A mathematical model has been developed to describe the dynamics of
the tube-fluid system due to the pop-out phenomenon. The model takes into consideration the coupling
effect between fluids and the structure, as well as the inherent system damping of its response.  An ana-
lytical solution describing the wave propagation in the tube-fluid system was obtained. The model iden-
tified the potential failure locations and showed that the inherent system damping reduced the chances
of failure but could not eliminate it completely.  In addition, it showed that the coupling effect was more
prominent in the tube as compared to the outer and inner fluids. Furthermore, a sensitivity analysis was
conducted in order to investigate the effect of the geometrical and material properties on the response.
The sensitivity analysis showed that the coupling effect vanished with the increase in tube stiffness and
reached an asymptotic value with an increase in formation stiffness.
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1.  Introduction 

Solid expandable tubular (SET) technology is a
down-hole process consisting of expanding the diame-
ter of a tube by pushing or pulling a mandrel through
it. Recent interest and further research in SET will be
able to provide solutions for many unsolvable prob-
lems having to do with well drilling and completion,
such as extended reach applications, mono-diameter
wells, cost- effective repair of damaged zones and the
conservation of hole-sizes.

The principle behind SET is simple. A mechanical
expansion device, known as a mandrel, is pushed
through the tube hydraulically by back pressure across
the mandrel. The forward movement of the mandrel
expands the tube to the required diameter.

The first SET test was performed at Royal Dutch
Shell in The Hague (Fillipov et al. 1999). The test
results were encouraging and paved the way for signif-
icant research work in this field. Recently, there has
been an increase in applications in well engineering
due to their many successes in deep water applications
as well as its cost effectiveness in solving many long
standing problems faced during the construction and
operation of wells (Owoeye et al. 2000). Most of the
researchers have focused their efforts on determining
the power required for down-hole tube expansion and
its effect on mechanical properties including burst and
collapse strengths (Fillipov et al. 1999;  Mark et al.
2000).  Ruggier et al. (2001) attributed the decrease in
collapse pressure to the length and thickness variation,
the Bauschinger effect, and residual stresses. Stewart
et al. (1999) conducted a laboratory test on a 3.5-inch
outer diameter tube and showed that the elongation at
fracture and uniform strain decreased, while the yield
and ultimate tensile strength increased. Limited suc-
cessful applications of SET in well construction and
remediation were reported by Daigle et al. (2000).
Due to the complexity of the process, the researchers
have focused their effort only on determining the
power required for down-hole and simulated expan-
sion, and post-expansion behavior using the finite ele-
ment method. Pervez et al. (2005) used a non-linear
explicit finite element analysis to study the effects of
expansion ratio, friction coefficient, and mandrel angle
on tube expansion. It was found that for small conical
angles in mandrels and in large expansion ratios, the
failure could not be avoided even at low values of fric-
tion coefficient. In a subsequent study, Pervez et al.
(2005) concluded that the tube wall thickness
decreased with an increase in mandrel angle, expan-
sion ratio, and friction coefficient. The tube length
often shortened for expansion under tension for most
of the loading mechanisms, but it elongated at high
drawing force.

During the hydraulic expansion process, elastic
energy is stored in the tube, and in inner and outer flu-
ids. When the mandrel pops out of the tube, the stored
energy is suddenly released resulting in an excitation
of the whole assembly. This dynamic condition is
called the pop-out phenomenon. Nothing has been
found in the literature that specifically addresses the
pop-out phenomenon. The authors have developed a
mathematical model without damping effects to pre-
dict the system response as well as the propagation of
displacement, pressure, and stress waves in the tube,
and in the inner and outer fluids (Karrech et al. 2004;
Pervez et al. 2006). It was found that the three medi-
ums interact with each other immediately after the
pop-out phenomenon takes place, where a small dis-
turbance in one medium influences the others. When
the tube is purely elastic, the effect of the outer fluid
on the inner fluid is substantially higher (Seibi et al.
2004). This reduces significantly if the tube material is
elastic perfectly plastic. Aarrestad et al. (1986) studied
a similar problem regarding the dynamics of sub-
merged drill strings. In this study, the damping effects
were included but the coupling between the drill string
and the fluid were ignored.  It was found that frequen-
cy-dependent damping more accurately responded
than constant damping when compared with experi-
mental results. For the same problem, Lea  (1996) car-
ried out a modal analysis including the coupling effect
between the drill string and fluid. This work neglected
damping effects. Wang and Bloom (1999) investigated
the effect of geometry on the natural frequencies and
damping ratios of an inclined submerged tube. 

In general, an oscillating system dissipates energy
while vibrating. Therefore, damping is considered one
of the most important characteristics of the system
unless it is not desirable by design.  It is certainly use-
ful in SET, where it may limit the resonant amplitudes
of the structures and drive system, stabilize instru-
ments and sub-systems, or reduce the danger of tube
failure. Virtually all phases of the response of tube-
fluid system are affected by the damping, yet no
efforts have been made for their proper characteriza-
tion. 

The primary goal of this work was to predict the
system response and determine the coupling effects
between the propagating waves in the tube and its
inner and outer fluids while considering the inherent
damping present in the system. Due to the difficulties
in mathematically representing a real damping mecha-
nism, a proportional damping approximation has been
employed here. The influence of formation stiffness,
tube material properties, and fluid characteristics on
coupling effects is also investigated here.



13

Coupling and Damping Effects on the Dynamics of Submerged Expanded Tubes in Borehole Wells

2.  Problem Formulation

The tube-fluid system to be studied consists of a
down-hole expanded tube, a mandrel pumped through
it, and fluids from inside and outside as shown in Fig.
1.  It is assumed that 

* the tube, and inner and outer fluid layers are uni-
form and homogeneous;

* the formation is impermeable; 
* the steady state fluid velocity is low compared to

the axial wave propagation speed;
* all waves are monochromatic and wavelengths are

long as compared to the borehole diameter, and 
* the tube material is elastic perfectly plastic as the

tube is already plastically deformed due to the
expansion process. 

During the expansion process, the tube, with inner
and outer post-expansion radii of  ri and ro,  respec-
tively, is subjected to an inner pressure, pi and an outer
pressure, po.   When the mandrel leaves the tube, the
inner pressure and the axial stress in the tube sudden-
ly drop to zero.  During the expansion process, elastic
energy is being stored in the fluid and the tube depend-
ing on its dimensions and mechanical properties. 

2.1   Coupled Equations of Motion
Using the above-mentioned assumptions, the con-

tinuity of the mass and momentum of the fluids as well
as the equations of motion for the tube-fluid system,

the wave equations associated with the inner fluid,
elastic perfectly plastic tube, and the outer fluid,
respectively, can be expressed as

(1)

(2)

(3)

The derivation of these governing differential equa-
tions is shown in the Appendix. The coupling effect is
mainly dependent on the cross sectional dynamic
change and the material properties such as densities,
fluid's bulk modulus, the formation shear modulus,
and the tube's elastic constants. The above-mentioned
equations of motion can be written in a matrix form
where the off-diagonal terms describe the coupled
behavior of wave propagation in the three mediums.

Formation

Free End

Expandable Tube

Outer Fluid

Mandrel

Inner Fluid
Fixed End

pi,o (L,t) = 0
&

p (L,t) = 0

wi,p,o (0,t)=0

(a) Expansion Process                                                            (b) Pop Out Phenomenon

Figure 1. Schematic diagram of tube expansion and boundary conditions
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(4)

where w = {wi wp wo}T represents the displacement
vector in the three mediums.  A is the matrix of known
coefficients and I is the 3 x 3 identity matrix. Using the
transformation = we-i( t+KZ), Eqn. 4 can be
expressed as a linearized eigenvalue problem as fol-
lows:

(5)

(6)

where the subscripts 'i', 'p' and 'o' refer to the inner
fluid, the tube, and the outer fluid, respectively. The
terms  n  and Sn denote the angular frequencies and
wave propagation speeds for the tube, and the inner
and outer fluids.

2.2  Damping Approximation
The damping effects have been neglected while

deriving the equation of motion (Eqn. 4) and the eigen-
value problem (Eqn. 5) of the tube-fluid system.
Although neglecting damping simplifies the deriva-
tion, it jeopardizes complete understanding of the
dynamics of the system. In order to obtain relevant
results, damping must be taken into consideration in
determining the system response in terms of displace-
ment, pressure, and stress waves through the three
mediums. In general, the damping force in a dynamic
equilibrium equation is proportional to velocity.
Hence, augmenting Eqn. 5 with a damping force term
gives

(7)

Where D represents the damping matrix. The ways
in which the tube-fluid system may be damped are

diverse and can incorporate many different kinds of
mechanisms. For instance, the tube vibration can be
damped due to the viscous effects of the surrounding
fluids. In addition, the visco-elastic effect of the solid
mediums further enhances damping. According to
Apostal et al. (1990), the damping matrix of a sub-
merged drill-string in a borehole contains terms based
on the effect of proportional, structural, and viscous
damping. The effect of Rayleigh or proportional
damping on the bottom-hole assembly (BHA) vibra-
tional response is described by Dr = o A + 1 B,
where o and  1 are proportionality coefficients.
The structural damping, which is assumed to be pro-
portional to the displacement but in phase with the
velocity of a harmonically oscillating BHA, is decom-
posed into two separate terms:  Ds = 2 B + 3 Bc. The
first term characterizes the behavior of the BHA alone
while the second term represents the possible contact
between the structure and the borehole, and Bc is the
equivalent contact (or formation) stiffness matrix.
Also, the viscous damping describes the energy dissi-
pation by laminar fluid friction.  Aarrestad et al.
(1986) showed that the fluid viscous damping was
negligible as compared to the breathing effects (ie. the
effect of the propagating waves on the environment
due to the radial contraction of the tube); hence, it can
be ignored in the present system.  In addition, the tube
did not come in direct contact with the formation, as
the structure did not experience bending due to pop-
out. Therefore, the damping of the system under con-
sideration can be described by a damping matrix,
which is proportional to the equivalent mass and stiff-
ness matrices:

D = o A + 1 B                                        (8)

The constants  o and 1 satisfy the relation

(9)

where is the damping ratio and  is the natural fre-
quency of the system.

Using Eqn. 9 for the first two modes of vibration
gives

(10)

The dynamic response is essentially governed by
the lower modes. Therefore, in the above equation, the
constants o and  1 can be determined once the fre-
quencies of the first two modes and their correspon-
ding damping ratios are known. However, the values
that bracket the likely range of frequencies of interest
can also be used for certain applications. 

22
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Fossen and Johansen (2002) performed an experi-
ment on a similar submerged cylinder in a frame to
determine the natural frequencies and damping ratios.
The tests for different fluids were carried out at
Institutt for Teknisk Kybernetikk at Norges Teknisk-
Naturvitenskapelige Universitet (NTNU). These tests
experimentally determined the damping ratios used in
Eqn. 10 along with the first two fundamental frequen-
cies of the system to calculate unknown constants o
and 1 .

3.  Solution of Governing Equations

The orthogonality properties of the undamped mode
shapes are used to decouple the equations of motion
(Eqn. 7). Using the transformation = y, Eqn. 7
reduces to

(11)

where is the modal matrix consisting of independ-
ent mode shapes of the associated undamped system.
Use of the orthogonality condition reduces the coeffi-
cients in the above equation to

Hence, the equation of motion corresponding to the
nth mode of vibration can be written as follows: 

(12)

The solution requires initial and boundary condi-
tions associated with mandrel pop-out at the end of
expansion process. Figure 1 shows the tube-fluid sys-
tem where the tube is fixed at the bottom end and is
free at the top end. Hence, the boundary conditions can
be expressed as:

(13a)

During the expansion process, the tube is subject-
ed to uniform axial stress, p, inner pressure, qi , and
outer pressure, qo, which is thereby independent of z.
With the sudden release of the mandrel, the stress and
pressure at the free end of the tube along with the inner
and outer fluids drop to zero, leading to the following
initial conditions:

(13b) 

(14)

where n = i, p, o and k = 1, 2, 3, …., oo, 

and 

4.  Results and Discussions

Once the mandrel pops out, the tube-fluid system is
excited by the sudden release of energy stored in the

p

oin

poin
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system. This initial excitation at the free end of the
tube results in stress and pressure waves propagating
in the three mediums. To investigate the dynamic
effects of the pop-out phenomenon, a typical field case
with an expansion ratio of 20% and a friction coeffi-
cient of 0.1 was considered. The geometrical and
material parameters were the inner radius of the tube-
ri = 0.0504 m, outer radius of the tube- ro = 0.0635 m,
tube length- L = 20 m,  wellbore radius- rw = 0.17 m,
Poisson's ratio- v = 0.3,  Young modulus- E = 206
GPa,   density of tube material- p = 7800 kg/m3,
yield strength- Y = 500 MPa,   bulk modulus of the
inner and outer fluids- Bi = Bo = 2.15 GPa,   densities
of inner and outer fluids- i = p = 1000 kg/m3,   and
formation shear modulus- G = 10.2 GPa.

A conical shaped mandrel was used for expansion
with an optimal cone angle of 20° (Pervez et al. 2005).
In order to quantify the post-expansion system
response, the drawing force required to expand the
tube was determined using a finite element analysis
(Pervez et al. 2005). At the end of the expansion
process, the inner fluid pressure was 57 MPa and the
axial stress in the tube was 149 MPa. These values
then became the initial conditions for the tube-fluid
system. The boundary conditions were governed by
the fixed end condition at the bottom end of the tube. 

4.1  Damping and Coupling Effects 

(15)

It is important to note that the superposition of the
axial stress and displacement of the tube was allowed
because the deformation in the z-direction was purely
elastic [Appendix 6]. 

Figure 2 shows the waves propagating in the three
mediums with respect to time and position along the z-
axis of the tube. It can be seen that the tube experi-
enced a high apparent frequency of 64 Hz as compared
to the inner and outer fluid frequencies, which were

18.43 and 16.41 Hz, respectively. In terms of displace-
ments, it can be seen in Figs. 2 (a), (c), and (e) that the
inner and outer fluid tubes reached 0.6 m, 1.4 cm and
2.3 cm, respectively, when the mandrel popped out. In
addition, Fig. 2 shows that the displacements satisfied
the initial conditions defined by Eqn. 13.  The dis-
placements were maximized at the free end (z = L) and
equal to zero at the fixed end (z = 0). It can also be
noticed that the initial displacement of the inner fluid
at the tube's free end was quite high as compared to the
tube length (5%) but this result was expected with the
high inner fluid pressure. Initially, the response corre-
sponded to the excitation imparted to the system.
Figures 2(b), (d), and (f) show that the inner and outer
pressure and the axial stress were equal to 57 MPa,
zero Pa and 149 MPa, respectively, when the pop-out
took place. After pop-out, the displacements, stress,
and pressures started decaying and interacting with
each other as shown analytically by Eqn. 14.  Also of
note is that the amplitudes of the fluid pressures and
tube axial stress were maximal at the fixed end (z = 0)
of the system and equal to zero at the free end (z = L).  

Note that the inner fluid mode was slightly affect-
ed by the radial flexibility of the tube. The wave prop-
agation speed increased by 0.5% relative to the sonic
speed. The effect on the tube was almost negligible.
However, the outer fluid mode was substantially
affected and the wave propagation speed was lowered
by 11% as compared to the corresponding uncoupled
wave propagation speed. This was due to the low shear
modulus of the formation and the radial flexibility of
the tube.  For each eigenvalue,  ,  there was a corre-
sponding eigenvector describing the contribution in
terms of amplitude of each medium on the propagation
modes. The three eigenvectors, as columns, are given
in the following matrix: 
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(a) Axial displacement of the inner fluid                                                  (b) Pressure of the inner fluid

(c) Axial displacement of the tube                                                              (d) Axial stress of the tube

(e) Axial displacement of the outer fluid                                                         (f) Pressure of the outer fluid

Figure 2. Response of tube-fluid system in terms of axial displacement, stress and pressures

Figure 3.  Von Mises stress variation versus time for different damping ratios (at the fixed end)
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(16)

The eigenvectors were normalized in order to study
the contribution of each medium to the others. It can
be observed that the off-diagonal terms representing
the coupling effect were, in general, small in magni-
tude. For example, in the second mode, a vibration
amplitude of 1 mm in the tube induced a vibration
amplitude of 0.0542 mm and 0.0137 mm in the inner
and outer fluids, respectively. This means that each
mode was strongly located within its own medium and
the disturbances in other mediums were very small.

Interestingly, the inner fluid mode was contained
within itself and did not produce any disturbances to
the tube or outer fluid (two zeros in first column). This
is due to the elastic perfectly plastic tube material. The
inner fluid was in contact with the plastic region of the
tube, while the outer fluid was in contact with the elas-
tic region. 

The changes in the fluid properties of the outer
fluid due to the presence of mud will enhance the
inherent system damping. 

4.2  Effects of Geometrical and Material Pro-
perties

The response of the formation-fluids-tube system
is highly influenced by the material properties and
geometry. The objective of this section is to study the
effects of the formation shear modulus and tube stiff-
ness on the response of the structure in terms of natu-
ral frequency and coupling between the propagating
waves. 

Figures 5 (a) and (b) show that the natural frequen-
cies and wave propagation speeds increase with tube
stiffness.  It is important to note that according to
Eqns. 15 and 16, the predominant mode of system
vibration corresponds to the tube. Therefore, the com-
ponents of this mode are reported in Fig. 6, which
shows that the coupling effects vanish with an increase
in tube rigidity. This result was expected as the cou-
pling effects are mainly related to the stiffness of the
tube and formation as can be seen through Eqns. 9
through 11. When the stiffness of the tube increases,
the cross-sectional change of the inner and outer fluid
medium reduces. This results in less interaction
between the three mediums. 

On the other hand, it can be seen in Figs. 7 (a) and
8 (a) that the frequency of the tube and the interaction
between the tube and inner fluid do not change signif-
icantly with the formation shear modulus. However,
the frequency of the outer fluid and the amplitude of
the coupling term between the outer fluid and tube
increase with the formation shear modulus, as shown
in Figs. 7 (b) and 8 (b). This means that in the predom-
inant mode of vibration, the component associated
with the annulus is much more affected by the forma-
tion shear modulus variation than the others. This phe-
nomenon is equivalent to the garden hose effect where
larger hoses yield lower fluid speeds. Moreover, when
the stiffness of the formation increases, the amount of

10137.00
0054.010
0156.00542.01



(a)                                                                                                                             (b)

(c)                                                                                                                              (d)

Figure 4.  von Mises stress variation versus time, at the fixed end for different damping ratios
(a) (1)p = 1%; (b) (1)p  = 3%; (c) (1)p = 20% and (d) (1)p = 30%

(a) (b)

Figure 5. Variation of the tube (a) and outer fluid (b) frequencies with respect to the tube stiffness
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energy imparted to three mediums does not perform
work on the formation. This increases the amplitudes
of the waves in the outer-fluid-tube region.

5.  Conclusions

A mathematical model for tubes submerged in
inner and outer fluids inside boreholes was developed

(a) (b)

Figure 6. Variation of the first (a) and third (b) components of the predominant mode of vibration with respect
to the tube stiffness

(a) (b)

Figure 7. Variation of the tube (a) and outer fluid (b) frequencies with  respect  to the formation shear modulus

(a) (b)

Figure 8. Variation of the first (a) and third (b) components of the predominant mode of vibration, with respect
to the formation shear modulus
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to investigate the dynamics of fluids and expanded
tubes due to the input energy imparted to the system at
the end of the expansion process.  This model took into
consideration the damping as well as the coupling
effects.  An analytical solution was obtained for the
displacement, and for the stress and pressure wave
propagation.  It was found that the expanded tube has
a localized critical region in the vicinity of the fixed
end of the tube, which, under the right conditions, may
fail. The inherent system damping helps to reduce the
failure, but it is not enough to completely avoid it.  An
alternative solution is to provide external corrective
damping in the system, which would be costly and dif-
ficult to implement in field conditions. Furthermore, a
sensitivity analysis was conducted in order to study the
effects of the geometry and the formation material
properties on the response of the system in terms of
frequency, wave propagation speeds. and coupling
effects.  The sensitivity analysis showed that the fun-
damental frequency of the outer fluid varied signifi-
cantly with the formation shear modulus. But the tube
fundamental frequency was insensitive to variation in
the formation shear modulus. The reverse was true
when tube stiffness varied.  More studies would be
required to study the use of solid expandable tube
technology in drilling mono-diameter wells efficiently
with less cost and time.  Future work may also include
other aspects such as the formation porosity or the
non-conservativity of the fluid mediums at the end of
the expansion process.
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Appendix 

Wave propagation in fluids both inside and outside the tube
The conservation of mass and momentum of a fluid element, inside and outside the tube, leads to the follow-

ing equations of motion:

(A-1)

(A-2)

By neglecting the convective terms and using simple algebraic transformations, (A-1) and (A-2) can be
reduced to the following form:

(A-3)

(A-4)

Governing equation for wave propagation in the tube
The effects of fluid viscosity are negligible. This means that there are no shear stresses either at the inner or

outer surface of the tube. Therefore, using an infinitesimal tube element, the equations of motion for the tube in
the cylindrical coordinate system (r, , z) can be expressed as

(A-5)

(A-6)

where u and w denote the radial and axial displacements. Since the internal fluid pressure developed during the
post-expansion process is uniform along the tube, the plastic zone is delimited by a cylindrical surface of radius
c, which is independent of z. Considering Tresca's yield criterion and a harmonic solution for the radial displace-
ment, it can be shown that the radial and hoop stresses in the elastic region c < r < ro are governed by the fol-
lowing equations:
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(A-7)

where Y is the yield strength. In the plastic region (ri < r < c ), the stresses satisfying the tube equation of motion
and Tresca's yield criterion can be written as

(A-8)

According to Tresca's yield criterion, the onset of yielding is given by the yield function f (s) = r = Y.
The plastic strain increment can be expressed as follows, using Levy's flow rule:

(A-9)

(A-10)

(A-11)

By integrating the previous equation and using the continuity of the displacement between the plastic and the
elastic zone, it can be deduced that

(A-12)

Using the constitutive relationship (A-10) and the equation of motion of a cylindrical element in the axial
direction of equation (A-6), the axial displacement can be expressed as

(A-13)

Substitution of the relation between fluid and pressure (A-4) into the equation in A-13 results in a final equa-
tion of motion for the wave propagation in the tube as in Eqn 2:

(A-14)
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The second term of the right hand side of A-14 represents the coupling effect between the outer fluid and tube
displacements. In the absence of outer fluids, it is obvious that A-14 reduces to the classical wave equation in
solids. Using the expression in A-12, the derivative of the radial displacement with respect to z for the inner and
the outer surface of the tube can be expressed as

(A-15)

(A-16)

(A-17)

where G is the shear modulus of the formation.


