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A General Ritz Algorithm for Static Analysis of Arbitrary
Laminated Composite Plates using First Order Shear
Deformation Theory
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Abstract: This paper is concerned with the bending of laminated composite plates with arbitrary lay-up
and general boundary conditions. The analysis is based on the small deflection, first-order shear defor-
mation theory of composite plates, which utilizes the Reissner-Mindlin plate theory. In solving the afore-
mentioned plate problems, a general algorithm based on the Ritz method and the use of beam orthogo-
nal polynomials as coordinate functions is derived. This general algorithm provides an analytical approx-
imate solution that can be applied to the static analysis of moderately thick laminated composite plates
with any lamination scheme and combination of edge conditions. The convergence, accuracy, and flexi-
bility of the obtained general algorithm are shown by computing several numerical examples and com-
paring some of them with results given in the literature. Some results, including general laminates and
nonsymmetrical boundary conditions with free edges, are also presented.
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1. Introduction

The advantages of composite materials over con-
ventional ones have been well-established because of
their high strength-to-density and stiffness-to-density
ratios. These advantages are especially desirable in
aerospace, aircraft, automotive, and other industrial
applications. Among the different types of composite
materials, fiber-reinforced laminates are very impor-
tant as structural plate components. The classical lam-
inate plate theory (CLPT) (Lekhnitskii 1968), which
neglects the effects of out-of-plane strains, has been
widely used for obtaining the mechanical response of
several composite plates. However, composite lami-
nated plates have relatively low transverse shear stiff-
ness making, in consequence, the transverse shear
strains more noticeable for laminated plates than for
isotropic plates. CLPT predicts the response of thin
isotropic plates with reasonable accuracy, but it usual-
ly fails to yield similar accuracy for composite plates
of a similar configuration. Because of this, CLPT often
under-predicts deflections and over-predicts natural
frequencies and buckling loads, even in thin laminated
plates.

There are numerous plate theories that include the
transverse shear strains in the analysis eg. (Noor and
Burton 1989; Maiti and Sinha 1996; Liew et al. 1996;
Reddy 2003). The first-order shear-deformation theo-
ry (FSDT) proposed by (Reissner 1945 and Mindlin
1951) assumes that planes normal to the midplane
remain straight, but not necessarily normal to it after
deformation. Since FSDT accounts for a constant state
of transverse shear stresses, shear correction coeffi-
cients are needed to rectify the unrealistic variation of
the shear strain/stress through the thickness and which
ultimately define the shear strain energy. Some other
plate theories, such as the higher order shear deforma-
tion theories (HSDT), include the effect of transverse
shear strains (Khdeir and Reddy 1989; Reddy 2003;
Xiao et al. 2008; Oktem and Chaudhuri 2008) and do
not need the use of shear correction coefficients in
computing the transverse shear stresses.

Notwithstanding the limitations of FSDT, from an
engineering point of view it is still a very attractive
approach due to its simplicity and low computational
cost. It is well recognized that while FSDT is adequate
for global structural behavior (eg. transverse deflec-
tions, fundamental vibration frequencies, critical
buckling loads, force and moment resultants), it is not
adequate for accurate prediction of local response
parameters, such as the interlaminar stress distribu-
tions (Qi and Knight 1996).

For problems involving different common and
refined plate theories, several numerical and analytical

approximate solutions have been proposed (Tessler
1993; Nguyen et al. 2005; Daghia et al. 2008; Fares
and Elmarghany 2008; Xiang 2009; Bodaghi and Saidi
2010). Most papers are limited to certain edges sup-
port and only to cross-ply or angle-ply laminated
plates. Closed-form solutions for laminated composite
plates using FSDT have been provided for some sim-
ple boundary conditions and some particular lamina-
tion schemes (Whitney 1987; Reddy 2003). Other
analytical solutions obtained by the Ritz method
employ trigonometric and hyperbolic beam functions
to form the approximate shape functions. However,
that approach for plates with general anisotropy leads
to resultant moments that appear to be oscillating
about a relative constant value, as has been shown by
(Nallim and Grossi 2003).

In this study, FSDT was employed in conjunction
with the Ritz method and sets of beam characteristic
orthogonal polynomials for obtaining a generalized
approximate analytical solution to study the static
behavior of arbitrary composite laminated plates with
all possible combinations of boundary conditions. All
coupling effects including, stretching-bending,
stretching-shear, and bending-twisting were consid-
ered in the formulation. The accuracy of the present
method, is shown through the convergence tests for
selected plate problems and selected results are com-
pared with those published by other authors. Few
selected cases are solved and the corresponding
deflections and resultant moments are presented by
means of plots and in tabular form. Results include
laminated plates with general lamination sequences,
non-symmetric boundary conditions and free edges.

The algorithm developed offers an interesting alter-
nate from an engineering view point to perform design
analysis. It can be applied to the analysis of a wide
range of rectangular laminated plates with different
boundary conditions, number of layers, stacking
sequences, and fiber orientation.

2. Formulation

2.1 Energy Functional Components

A rectangular fiber reinforced composite laminated
plate of uniform thickness # is shown in Fig. 1. The
plane x, y coincides with the middle surface along the
plate thickness, while z remains normal to it. In each
layer of the laminate, & denotes the angle of fiber ori-
entation and the major and minor principal material
axes are denoted by 1 and 2, respectively.

In the first order shear deformation theory, the plate
kinematics is governed by the midplane displacements
ue, vo, we and rotations ¢,, ¢, given by:
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Figure 1. General description of the composite plate model
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where z is the thickness coordinate as measured from
the reference plane shown in Fig. 1.

It is necessary that the two in-plane mid-surface
translational displacements #° and v¢ are included in
the analysis due to the coupling between in-plane and
out-of-plane behavior in laminates with unsymmetri-
cal lay-up.

Considering the established kinematics and basic
assumptions of the first order theory, the strain

energy, U, is given by (2), where R is the mid-
surface area and K is the shear correction factor
which can be estimated by using special methods
(Whitney 1987).

In Eq. (2), the extensional stiffness, bending-exten-
sional coupling stiffness, bending stiffness, and trans-
verse shearing stiffness are respectively given by:

(A4.B,,D,)= f (1,22 )Q dz i,7 =1,2,6

3)

hf2 _

A= Qdz ij=45

hf2
where @U represents the elastic mechanical constants
referred to in the xz,y axes (Reddy, 2003). The

potential energy of a transversal load ¢(z,7)
distributed over the plate surface is given by:
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Table 1. Notations for various combinations of boundary conditions, in which » and s indicate the normal
and tangential directions to the respective plate edges

In plane constraints

Transverse boundary supports u, =0 N, =0, u, =0, N, =0,
u, = u, =0 N, =0 N, =0
Clamped: w = 0; ¢, =0 C, C, C; (on
Simply supported: w =0; M =0;¢9, =0 g, S, S, S,
Free: M =0; M =0; @ =0 F, F, F; F,
_ f f ) w dad For the construction of the orthogonal
- 9(@,y) y (4)  polynomials the following procedure is followed. The
first members of the sets are given by
2.2 Boundary Conditions and Approximating 5 1 5 1
Functions p@ = Zaix y and g, (y) = sz'y
i=1 i=1

The situation for asymmetrically laminated plates
is more complex than for symmetrical ones because
the transverse and in-plane displacements are coupled.
Actually, there are four types of boundary conditions
that can be called simply supported (S), clamped (C),
or free edges (F), and the combinations of these con-
straints are summarized in Table 1.

In the application of the Ritz method only the essen-
tial boundary conditions are required to be satisfied by
the assumed functions. The use of beam orthogonal
polynomials to study anisotropic plates is very satis-
factory, as has been demonstrated by Nallim et al.
(2003, 2005, 2008), since the convergence of the solu-
tion is rapid and practically without oscillations. In the
present work, the five displacement components are
expressed by sets of beam characteristic orthogonal
polynomials as follows:

D WL

=1 j=1
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where {p” ()}, {7 (1)}, () =", 0", 0,60,

are sets of orthogonal polynomlals generated by the
Gram-Schmidt recurrence formulas (Bhat 1985;

Nallim and Oller 2008), ¢, &, &, ¢ %

y oo Ty 2 Ty 0Ty i
are the unknown coefficients, and M, N are the
numbers of polynomials in each coordinate.

¢ (y),

(’”(y), ®)

¢ ().

(47 )(y>

where @, y b, coefficients are obtained from the

geometrical boundary conditions in each direction.
The rest of the sets are constructed by employing the
Gram—Schmidt orthogonalization procedure as

follows:
p, @ =(z-B)p @
p,(T) = (T - Bk) Py (T) Oy, (f)

where B,, C, are obtained using the orthogonality
property of the p, (x) polynomials:

a b

f:zc(pk,l(ac))2 dx fa:pk,1 @) P, (D dz

Bk — Ou 0 -
f Dy z(a:)
0

—\\2
f(pk—l (‘T)) dz
The same procedure is used for y variable.

C, =

0

3. Application of the Ritz Method

The total energy functional for the static bending
analysis of laminated plates is given by:

n=0+7V ©
where U is the strain energy given by Eq. (2) and 1%
is the potential energy given by Eq. (4).

The Ritz procedure requires the minimization of the
energy functional (6) with respect to each of the
unknown coefficients:

or ol ol o011 0
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Substituting Eq. (5) into the expression of the func-
tional Eq. (6), and subsequently applying Eq. (7)
results in the following governing equation:

[K] {C} = {f} (8)

where {f} is the load vector and [K] is the syammetric
stiffness matrix given by:

LSRR
AR

x| ) [ ]
] m

Sym e
)

and the unknown coefficient vector is:
u v w ( y)
{C} = {{ei Hew Hel Hen Hew T o)

The elements of the stiffness matrix are given in
Appendix A.

4. Numerical Results

A number of numerical examples are presented in
this section to demonstrate the performance of the gen-
eral algorithm developed for bending analysis of lam-
inated plates with various boundary conditions, span-
to-thickness ratios, fiber orientations, etc. The follow-
ing terminology is used for describing the plate bound-
ary conditions. For instance, S,5;C;C; identifies a plate
with edges simply supported along x = 0, a, and edges
clamped along y = 0, b. The subscript i (i=1,...,4)
indicates the in-plane constraints according to Table 1.
The results for square laminated composite plates are
compared with (Moleiro et al. 2008). The
gtraphite/epoxy material with properties are used.

The reference flexural stiffness is D, = E 1h3 /121 -

ViaVap)-

4.1 Validation and Convergence Studies
Comparison and convergence studies were conduct-
ed to evaluate the accuracy of the present formulation.
Table 2 shows results for square angle-ply anti-sym-
metric laminates (6/ - 6) with a S;S,C,C, boundary
conditions and thickness ratio. The results are given in
the form of deflection, bending moments at the plate
center, and axial forces at one of the corners of the
plate. The number of polynomials (M, N) are stepped
steadily from 5 to 8 to demonstrate the convergence. In

the same table the accuracy and reliability of the pres-
ent results are demonstrated by comparison with
(Sheikh et al. 2002) who used a high precision trian-
gular element considering the effect of shear deforma-
tion by taking transverse displacement and bending
rotations as independent field variables. The compari-
son shows a very good agreement.

Table 3 shows results of deflections, and moment
and transverse force resultants for simply supported
cross ply (0/90) square plates with uniform loading.
The lamina properties are E;/ E,=25,G,,/ E,=G;
/E;,=05,Gy;/ E,=0.2,v,,=0.25.
different thickness ratios were compared with those
published by (Moleiro et al. 2008) and a very good
agreement was observed.

The results for

4.2 Numerical Examples

The developed Ritz formulation is applied in this
section to obtain the plate deflections and moment
resultants of general laminated plates with several
combinations of boundary conditions and stacking
sequences. The capability and generality of the present
approach is shown through selected examples depict-
ed in Table 4 and Figs. 2-4. Two different combina-
tions of boundary conditions, three thickness ratios,
and four lamination schemes have been chosen as
examples.

The effect of span to thickness ratio on center
deflection for symmetrical and anti-symmetrical
cross-ply and angle-ply laminates with S,;S,C,C,
boundary conditions is shown in Fig. 5. The non-
dimensional deflection decreased as b / i increased,
but the decrease was small (beyond b / 4 = 40). The
value of the non-dimensional deflection became, as
expected, practically constant for thin plates. Also, the
difference between the symmetrical and anti-symmet-
rical lay-up values was small for cross-ply laminates
and much larger for angle-ply laminates.

Finally, antisymmetrical two layered laminates
(8/- 6 ), with a fiber orientation varying between 0°
and 45° were analyzed when simply supported
(S;S;S;S)), fully clamped (C,C,C,C,), and when
mixed (S;S,C,C,) boundary conditions were used.
Variations of non-dimensional deflection are shown in
Fig. 6. A change in fiber orientation led to an increase
in the non-dimensional deflection in case of fully
clamped plates, while for simply supported and mixed
boundary conditions, the non-dimensional deflection
showed a convex shape.

5. Conclusions
A general algorithm for static analysis of thick, arbi-

trarily laminated composite plates with multiple com-
bination of boundary conditions is presented in this
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Table 2. Convergence and validation results for angle-ply antisymmetric laminates

103wE2h3/p at 102Mxh2/pa2 IOF‘)Myhz/pa2

102Nﬂp/h2/;r)a2 10°N,, hQ/pa2

Sources MxN Izghyzg I=a,7yzﬁ Izg’yzg =0y =0 z =0,y =0
2 2 2 2 2 2

(159-15°)

Present 5x5 7.32100 11.64450 1.35680 36.34265 46.64834

Present 6x6 7.16079 11.65627 1.35659 34,12295 4544581

Present 77 7.15899 11.38646 1.22164 42.46526 45.61578

Present 8x8 7.16724 11.38790 1.21977 43.17482 45.70038

Sheikh et al.

(2002) 7.16720 11.42900 1.23450 44.10700 45.77800

(30%-30°)

Present 5x5 7.86464 7.13211 2.78603 22.00543 31.14831

Present 6x6 7.76537 6.91782 2.66332 22.60426 30.60577

Present 7x7 7.76502 6.91691 2.66246 22.96999 30.68150

Present 8x8 7.77049 6.95257 2.68187 23.04376 30.57181

Sheikh e a. 7.77010 6.95370 2.68280 23.28200 30.66100

(2002)

(459/-45°)

Present 5x5 742461 3.90210 390210 4.74293 4.74293

Present 6x6 7.33433 3.66572 3.66572 4.49922 4.49922

Present 77 7.33426 3.66458 3.66458 4.67624 4.67624

Present 8x8 7.33768 3.68020 3.68020 4.63219 4.63219

Sheikh et al.

(2002) 7.33830 3.68040 3.68040 4.62080 4.62080

Table 3. Convergence and validation results for S,S,S,S,, (cross-ply laminates)*

2 Ap 13 /4 A /2 B 2 c
Sources " MxN 10°w”E,h /pa 10Myy/pa 10Mw/pa 10Qf /pa
b/ h=10
Present 5x5 1.9556 0.6414 -0.1618 3.5091
Present 6x6 1.9470 0.6272 -0.1616 3.4795
Present 7x7 1.9470 0.6272 -0.1611 3.4631
Present 8x8 1.9469 0.6268 -0.1610 3.4657
Moleiro et al. (2008) 1.9469 0.6268 -0.1604 3.4703
b/ h=20
Present 5x5 176747 0.6450 20.15872 3.5518
Present 6x6 1.75838 0.6298 -0.15814 3.4986
Present 7x7 1.75840 0.6297 -0.15810 3.4786
Present 8x8 1.75825 0.6291 -0.15800 3.4854
Moleiro et al. (2008) 1.7582 0.6291 -0.15760 3.4880
b/ h=100
Present 5x5 1.7074 0.6465 -0.1570 4.1771
Present 6x6 1.6982 0.6311 -0.1561 3.8143
Present 7x7 1.6982 0.6310 -0.1561 3.5224
Present 8x8 1.6980 0.6301 -0.1559 3.4948
Moleiro et al. (2008) 1.6980 0.6300 -0.1572 3.4926

(*)Resultsat 4, (x=a/2,y=b/2); B,(x=0,y=0); and C,(x=a/2,y=0).
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Table 4. Laminated plates with S;S,C;C5, S,S,F,F,, S,F,C;C; and C,F,S,S, boundary conditions

Si1S1CiCs S| S| F4Fy
M 2 A 2 2 A 2 2 B 2 wADU 2 A 2 2 A 2 2 B 2
b/h pa’b? 10° M”/pa 10° M‘yy/pa' 10 Mw/pa‘ pa’h? 10 Mm/pa' 10 Myy/pa 10° Mxy/pa
0/%0 10 1.91085 5.16985 3.10277 -0.15931 45022 1244125 0.06638 -0.21960
20 1.46203 4.70059 3.32673 -0.07967 3.82016 1242912 0.07668 -0.20928
100 1.31256 4.49614 3.43055 -0.01331 3.60204 1242342 0.08115 -0.20198
30/-30
10 2.33660 6.73065 2.70848 -0.94762 5.00887 1753942 5.55785 -7.63619
20 1.87945 6.518%4 2.59216 -0.05395 423181 1690835 5.31326 -6.72788
100 1.71707 637823 2.53%48 1.37554 392325 1631041 5.10021 -3.22217
0/45
10 2.29114 7.21433 2.09630 4.67575 391459 1307055 2.20518 3.44731
20 1.79935 7.26791 2.03974 -3.89374 3.19469 1304412 2.39501 5.06825
100 1.62649 7.22313 1.97489 -1.43144 2.96609 1301622 2.44544 8.02781
0/30
10 240472 9.45824 1.81181 -3.03480 322818 132158 1.52171 4.09556
20 1.86325 9.78735 1.76011 -2.41140 246427 1322517 1.54095 5.58218
100 1.67733 9.80246 1.72394 0.57772 221681 13.11340 1.52356 8.17810
S1F4C3C3 CESS,
0/90
10 237292 1.54299 3.92693 -0.41387 3.13604 1.01229 8.65299 -0.14203
20 175334 1.35792 4.02024 -0.20051 2.59387 1.20841 8.43092 0.06499
100 155141 1.28573 4.06181 -0.02767 2.41851 1.28463 8.32839 0.00914
30/-30
10 0.02767 4.45259 2.93097 -2.85338 6.30485 2.73118 2.30205 -5.58008
20 391322 4.29930 2.78252 -1.30692 -5.58008 2.90081 2.08%5 294748
100 365247 4.19075 2.69676 1.115% 4.63883 3.11313 2.05653 0.5289
0/45
10 434409 3.36795 3.50878 -6.12189 6.71910 2.40778 5.42696 -12.42389
20 361144 345713 3.57674 4.79724 5.43032 2.39852 5.01418 -10.41609
100 334215 3.57463 3.58661 -1.9905 4.91878 2.40356 4.82715 4.00303
0/30
10 588477 4.53894 3.09778 -8.46556 7.26061 -2.92413 0.17388 23.32274
20 5.16109 4.73620 3.05669 -6.20950 5.65240 -3.30340 0.23627 -19.35380
100 488650 4.87695 3.03342 -3.00629 5.05097 -4.15112 -0.04051 -12.55993
(0/90) (30 /-30)

Figure 2. Contour plot of moment resultants for different laminated plates with S;S,C;C; boundary conditions
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(0/90)

(30/-30)

Figure 3. Contour plot of moment resultants for different laminated plates with S;F,C;C; boundary

conditions
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Figure 4. Contour plot of moment resultants for different laminated plates with C,F;S,S, boundary
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Figure 5. Variation of non-dimensional static deflec-
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Figure 6. Variation of non-dimensional deflection
with fiber orientation angle (b / h = 20)
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work. The algorithm is based on the Ritz variational
method and the first order shear deformation theory.
The five components of the displacement field were
approximated by sets of characteristic orthogonal
polynomials generated using the Gram-Schmidt pro-
cedure. The algorithm developed was very general and
allowed the analysis of moderately thick plates with
different materials, laminate lay-ups, span-to-thick-
ness ratios, and boundary conditions. The computa-
tional implementation is also very simple, and the for-
mulation is such that we could appreciate how the var-
ious geometrical and mechanical parameters involved
influenced the static response.

Consequently, the developed formulation consti-
tutes an efficient tool in design and optimization prob-
lems. Comparisons of the present results with a variety
of other published results were made with very good
agreement. Some typical results were given for cross-
ply, angle-ply, and arbitrarily laminated plates with
various thickness ratios ranging from moderately thick
to thin, and for different boundary conditions.
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Elements in Eq. (9)
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