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Abstract : This paper presents a finite element model for idealisation of reinforced concrete hollow beams using 2D
plane elements. The method of ensuring compatibility between the plates using two-dimensional model to analyze this
type of structures is discussed. Cross-sectional distortion was minimised by incorporating end diaphragms in the FE
model. Experimental results from eight reinforced concrete hollow beams are compared with the non-linear predictions
produced by a 2D in-house FE program. The beam dimensions were 300x300 mm cross section with 200x200 mm hol-
low core and 3800 mm long. The beam ends were filled with concrete to form solid end diaphragms to prevent local dis-
tortion. The beams were subjected to combined bending, torsion and shear. It was found that the two-dimensional ideal-
isation of hollow beams is adequate provided that compatibility of displacements between adjoining plates along the line
of intersection is maintained and the cross-sectional distortion is reduced to minimum. The results from the 2D in-house
finite element program showed a good agreement with experimental results.

Keywords: 2D analysis, Finite element method, Hollow beams, Bending, Torsion, Shear,
Combined load, Numerical model

Notation

= The strain matrix composed of derivatives of shape functions
The elasticity matrix

O @
1

{F} = The equivalent nodal forces for the continuum

E. = The initial modulus of elasticity of concrete for uniaxial loading.
E, = The secant modulus of elasticity at peak stress Eq = O / 2

feu = Concrete cube compressive strength

fe = Concrete cylinder compressive strength

fy = Tensile strength of concrete

{F} = The total applied load vector
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Computational failure load = (M+T.)/2
Design ultimate load = (My+T)/2
L, = Experimental failure load = (Mg+T,)/2

L.F. = Load factor
L.F. = (M /My + T/Ty)/2

—
o
1

My, T4, V4 = Design ultimate bending moment, twisting moment and shear force, respectively
M., T,V = Experimental failure bending, torsion and shear force, respectively
M., TV, = Computed failure bending, torsion and shear force, respectively

{Ri} = The residual force vector at i, iteration

o = The ratio of the principal stresses o,/ o,

{6} = The nodal displacements of the continuum

€cc = Concrete strain at peak stress

€cr = The tensile crack strain (corresponds to the peak tensile stress)

€max = Maximum compressive strain

€, = A fictitious strain normal to the crack plane

& = The strain at the peak (maximum) compressive stress of the concrete Op
ele, = Steel strain ratio = Measured strain at L.F. load / Measured yield strain
v = The Poisson's ratio

cand e = The current stress and strain

Cp = The ultimate strength of concrete in compression, equal fc'

Tior = Shear stress due torsion

Tshr = Shear stress due shear force.

1. Introduction

Considering the complex behaviour of hollow beams,
a detailed analysis would normally require a full three-
dimensional finite element model especially with box-sec-
tions for large girder bridges. However, a study of the
structural behaviour of typical thin-walled concrete beams
indicates that the main stress conditions are those of direct
stresses in the plates of the box beam. The forces involved
in out-of-plane bending are very small and can be ignored.
The distortion of cross-section is prevented by the use of
reasonably thick plates and end diaphragms. This suggests
that the main stresses are in-plane ones and, therefore,
plane stress elements can be used to account for the major
stresses. Zero stiffness is assumed for out-of-plane bend-
ing action of the component plates. Figure 1 shows the
state of stress in a typical box beam subjected to bending,
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Figure 1. State of stress in a typical beam

torsion and shear. The wall thickness used for torsional
resistance was 50 mm which is 1/6 of the beam depth
(Thurliman, 1979; MacGregor and Ghoneim, 1995).

Bhatt and Beshara (1980) studied the behaviour of
bridge box girders using similar method with plane ele-
ments. In their work, out of plane bending was considered
due to the large size of the box girder. The advantages of
using 2D approach over a full 3D finite elements solution
as studied by Abdel-Kader (1993) is that it is easier and
leads to cheaper computations while at the same time the
main stresses are obtained with reasonable accuracy. In
this study, a 2D in-house finite element program was used
to analyse eight reinforced concrete box beams. The actu-
al beam ends were filled with concrete to form end
diaphragms. The diaphragms were included in the numer-
ical analysis. The predicted behaviour was compared with
the experimental results.

=

=

N> N

N\

Shear



55

The Journal of Engineering Research Vol. 2, No. 1 (2005) 53-68

2. Research Significance

A method using 2D plane elements to model 3D hol-
low beams is introduced. The compatibility of displace-
ment between adjoining plates was maintained by intro-
ducing constraints on the displacement. The cross-section-
al distortion was minimized by incorporating the end
diaphragms into the in-house FE program. This work is
restricted to the analysis of hollow cross-sections with in-
plane stresses.

3. Geometrical Relationship between
Displacements

The two-dimensional idealisation of box girders is ade-
quate provided compatibility of displacement between
adjoining plates along the line of intersection is main-
tained and cross-sectional distortion is reduced to a mini-
mum. To achieve these objectives, the following steps
were adopted as shown in Fig. 2:

1. To ensure shear transfer between adjoining plates of the
beam, compatibility of displacement along the line of
intersection at the common edge of adjoining plates is
maintained by introducing geometrical constraints.

2. To reduce cross-sectional distortion, end diaphragms
are introduced into the analysis.

To illustrate this technique, consider top flange, front
web and left diaphragm of a typical beam as shown in
Fig. 3. For ease, only corner nodes of some elements are
shown in this illustration.

If the out-of-plane bending is ignored, then the web and
the flange can be considered as thin plates in a state of
plane stress. However, the displacements of both plates
along the joining line are equal to each other. The dis-
placements perpendicular to the joining line are independ-
ent of each other. The same applies to the lines joining the
plates with the diaphragm. It is therefore, necessary in this
analysis to enforce geometrical constraints to ensure com-
patibility along the lines of intersections. This is done by
giving the same freedom number for those equal displace-
ments. Other freedoms which are independent are given
different numbers. In other words, every pair of displace-
ments in the x-direction (direction of the beam axis) of the
joining line between the flange and the web will be hav-
ing the same freedom number and, therefore, the same dis-
placement value for that pair. The displacements perpen-
dicular to this line will have different numbers. In addition
to the freedom numbering, attention should be given to
plate orientation when the whole structure is assembled, to
prevent contradicting directions of displacements. The
rigid body movement is prevented by proper restraints,
which are dependent on the load conditions and support
locations.

4. A 2-D Finite Element Program

In modelling the linear and non-linear responses of
concrete as a continuum, the non-linear elasticity

approach was adopted. In this approach, the bulk modu-
lus, shear modulus, Poisson's ratio and Young's modulus
of concrete are expressed in terms of stress/strain vari-
ables, such as deviatoric stresses or strains, stress or strain
invariants, normal and octahedral strain ... etc. The mod-
uli were used to formulate an isotropic matrix to represent
the behaviour of concrete at a certain load level
(Alnuaimi, 1999; Kotsovos and Pavlovic, 1995; Chen and
Saleeb, 1994). No bar dual action or bar kinking were
included in the analysis.

The above idealisation was implemented in a 2D finite
element program originally developed for carrying out
non-linear analysis of solid rectangular beams Abdel-
Kader, (1993). In this program, Eq. 1 was used to repre-
sent the ascending portion of the uniaxial compressive
stress-strain curve. This equation was tested by Darwin
and Pecknold, (1977) on many experimental results and
used by Bhatt and Abdel-Kader, (1995) to numerically
analyse many reinforced and pre-stressed concrete beams
from different experimental investigations.
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In modelling the non-linear stress-strain relationship of
the concrete in the principle stress direction, Eq. (2) was
adopted as proposed by Liu et al. (1972) and used by
Bhatt and Abdel-Kader, (1995). This equation accounts
for non-linear behaviour of concrete in biaxial compres-
sion and takes the form:

E £
O = 2

A-va)|1+ (-t Ec_p) &l E 11
1-va E; €, | &

If o =0, i.e. for uniaxial state of stress, Egs. (1) and (2)
become identical.

Equation (2) was used to generate the stress-strain
behaviour of concrete in biaxial compression up to peak
strain €, after which this equation ceases to be valid due
to softening deformation. A linear descending curve was
adopted by Bhatt and Abdel Kader (1995) as given by Eq.
(3) after the maximum stress was reached until a maxi-
mum strain of 0.0035 after which the stress drops to zero.

_ (01-9)

oc=——"21f  £<0.0035
(O'l_gcc) ’ ®

Figure 4 shows typical stress-strain curve for combined
ascending and descending parts plotted using Egs. (1)
and (3).

Smeared crack model with orthogonal cracks was
adopted. In this model, it is assumed that before cracking
the concrete is a homogeneous, isotropic and linear elastic
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Figure 4. Typical combined stress-strain curve

material and after cracking the concrete remains a contin-
uum but becomes orthotropic with one of the material axis
orientated along the direction of the crack. The idea of
orthogonal cracks was adopted, where cracks are allowed
to open only in directions orthogonal to the existing
cracks. These fixed orthogonal cracks are governed by the
direction of the first principal (tensile) stress that exceeds
the cracking strength. When a first crack occurs, it is
assumed that direct tensile stresses cannot be supported in
the direction normal to the crack and therefore, the modu-
lus of elasticity corresponding to this direction (normal to
crack) is reduced to zero unless tension stiffening is con-
sidered. The reduced shear stiffness due to aggregate
interlock is accounted for by a reduced shear modulus of
elasticity. On further loading, orthogonal cracks occur
when the tensile stress parallel to the first cracks becomes

greater than the concrete tensile strength f’t (Alnuaimi,

1999; Kotsovos and Pavlovic, 1995; Chen and Saleeb,
1994; Abdel-Kader, 1993). The effect of the shear reten-
tion factor was considered as given by Eqg. (4) while Eqg.
(5) was used for modelling the tension stiffening:

p=04¢,/¢, >0.05 (4
o = &%) £ N/mm? ©

Figure 5 shows typical shear retention curve and Fig. 6
shows tension stiffening curve used in this model. The
program was based on the finite element displacement
method, load control, where the displacements are the
prime unknowns, with stresses being determined from the
calculated displacement field. The non-linear problems
were solved satisfying the basic laws of continuum
mechanics: equilibrium, compatibility and constitutive
relationship of materials. In this program, the continuum
(structure) is divided into a series of distinct non-overlap-
ping eight nodded 2D isoparametric elements with nine
Gauss points for integration. Element stiffness matrix is
given by Eq. (6).

[K°] =er[B]T[D][B]dV (6)

The summation of terms in Eq. (6) over all elements
leads to the continuum stiffness matrix [K]. This is used in
a system of equilibrium equations for complete continuum
given by

{F}=[KNs} 7

This system of equations is solved using direct Gaussian
elimination algorithms in conjunction with frontal method
of equation assembly and reduction to yield the nodal dis-
placements. The main feature of this method is that it
assembles the equations and eliminates the variable at the
same time. Hence, the complete structural stiffness is
never formed. This reduces computer storage significant-
ly. Once this is done, the strains {e} and thereafter the
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Figure 5. Shear retention curve
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Figure 6. Tension stiffening curve
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stresses {o} in each element are evaluated using Eqs. (8)
and (9) respectively

fl=819° } ®)
{o}=[DKe} ©)

Incremental iterative procedure with Modified Newton-
Raphson method was used for the numerical solution of
the non-linear problems. In this approach, the total load is
divided into a number of load increments and the solutions
are obtained iteratively until equilibrium is achieved to an
acceptable level of accuracy. For every increment the
stiffness matrix was updated at the first iteration. To
ensure adequate convergence to the exact solution, conti-
nuity of displacement between adjoining elements, mate-
rial constitutive relation as well as equilibrium are main-
tained by constraints on nodal points and ensuring that at
any load level, stresses are consistent with displacement
field and material constitutive relationship. This is
obtained by successive linear solutions until specified
accuracy is reached. If the material is within the elastic
region, the relationship between the nodal forces and the
displacement is linear and the stiffness matrix is un-
changed. However, if the material yields then the relation-
ship is non-linear and the stiffness matrix has to be updat-
ed. This is done by a succession of linear approximations
considering the new material law. This piece-wise lin-
earization is used to form a global non-linear solution for
the problem.

A yield criterion for biaxial stress conditions based on
non-dimensionalised values of the principal stresses o;
and o, with respect to the uniaxial cylinder strength of
concrete f'.° was adopted. This criterion was originally
proposed by Kupfer et al. (1969) and tested and used by
many researchers. Detailed derivations of compression-
compression, compression-tension and tension-tension
criteria can be found in many references (i.e. Alnuaimi,
1999; Kotsovos and Pavlovic, 1995; Chen and Saleeb,
1994; Kupfer et al. 1969).

To ensure gradual elimination of out-of-balance (resid-
ual) forces and to terminate the iterative process when the
desired accuracy has been achieved, a convergence crite-
rion based on the out-of-balance load norms was used.
Since it is difficult and expensive to check the decay of
residual forces for every degree of freedom, an overall
evaluation of convergence was used. This was done by
using the residual force norm in each iteration i. This cri-
terion assumes that convergence is achieved if:

AR 004
F

(10)

Where the norm of residuals AR: at each iteration i, is
given by Eq. (11)

ARi* = \/{Ri}T{Ri}

And the norm of the applied loads F;* is given by Eq. (12)

Fi* = \/{Fi}T{Fi}

When a reinforced concrete member is subjected to a
tensile stress exceeding its tensile strength, the concrete
cracks at discrete locations. The total force is then trans-
ferred across the crack by the tensile steel. The reinforcing
bars were modelled as embedded in orthogonal directions.
Perfect bond (full compatibility) between steel and con-
crete was assumed. The displacement of any point on the
bar was obtained from the displacement field of the
isoparametric element in the bar direction. The stiffness
matrix of the bar K, was calculated separately and then
added to the stiffness matrix of the concrete K, to form
the element stiffness matrix Eq. (13)

(11)

(12)

K, =K, +K, )

In addition, the following parameters were used as con-
stants:

e Concrete cube compressive strength: f,, as

measured for each beam.
e Concrete cylinder compressive

f. =0.8f, N/mm?

strength:

e Young’s modulus: E, = 5000\/?0'N /mm?.

Ve
2500
e  Maximum compressive strain: emy, =0.0035 .

e  Compressive strain at peak stress: ¢, =

e Tensile concrete: f; =054, f,

N/mm?.

e  Mesh size: 84x84mm.

e  Maximum number of load increments: 30.

e Maximum number of iteration s per increment:
100.

e Load increment: 10% for the first five
increments and 5% thereafter.

e Steel strain points for comparison with
experimental results were located as in the
actual beam.

strength  of

5. Validation of the Proposed Model

The program was used in a parametric study for the
analysis of eight hollow reinforced concrete beams tested
at the University of Glasgow, UK (Alnuaimi, 1999;
Alnuaimi, 2002; Alnuaimi, 2003) under combined bend-
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ing, shear and torsion. The main variables studied were
the ratios of twisting moment to bending moment which
varied between 0.19 to 2.62 and the ratio of shear stress
due torsion to shear stress due shear which varied from
0.59 to 6.84 as shown in Table 2.

5.1 Test Beams

The tested beams were 300x300 mm cross section with
200x200 mm hollow core and 3800 mm length. The outer
400 mm of each end was filled with concrete to make it
solid to form a diaphragm to prevent distortion. The
beams were subjected to bending moment, twisting
moment and shear force. The middle 1200 mm of the
beam was considered as test span. This is the region where
both maximum moment and shear occur and with least
effect of concentrated stresses near the ends. Figure 7
shows loading and support arrangement and Fig. 8 shows
close look of the torsional arm and concrete filled end of
beam diaphragm. The beam was simply supported by a set
of two perpendicular rollers at each support to allow axial
displacement and rotation about a horizontal axis at the
soffit of the beam Fig. 9. Bending and shear were direct
result of mid-span point down-ward load while constant
torsion was applied by means of the torsion arms. During
testing the load was applied in increments as a percentage
of the design load, Ly, 10% for the first three increments,

in anticipation of crack initiation, and then 5% until fail-
ure. The beam was considered to have collapsed when it
could resist no more loads. Table 1 shows average meas-
ured material properties. Figure 10 shows the reinforce-
ment provided along the test span of each beam. The solid
circles refer to bars on which strain gauges were stuck
while the hollow ones refer to bars without strain gauges
installed.

5.2. Comparison between Experimental and the 2D
Computational Results
Here some experimental and computational results are
compared. The comparison was carried out using the fol-
lowing criteria:

* Load displacement relationship,
Longitudinal steel strain,
Transverse steel strain,

Failure load,

Crack pattern and mode of failure.

¥ % % %

5.2.1 Load-Displacement Relationship

Figure 11 shows displacements at mid-span of the
beam. It is clear from this figure that, in general, an
acceptable agreement between experimental and compu-
tational results was achieved in most cases. It should be
noted that in few cases, due to technical problems, it was
not possible to record displacement readings just before
failure (i.e. BTV6).

5.2.2 Longitudinal Steel Strain

Figure 12 shows that a very good agreement between
experimental and computational results was obtained for
longitudinal steel strains. The reported strain ratios were
closest to the mid-span of the beam.

5.2.3 Transverse Steel Strain

Figure 13 shows that a very good agreement between
experimental and computational results was obtained for
transverse steel strains. The reported strain ratios were at
the mid-depth of the beam section, closest to mid-span.

5.2.4 Failure Load
The ratios of experimental to computational failure

Table 1. Average measured material properties

Beam No feu ' f, v Age
Unit N/mm? | N/mm? | N/mm? | N/mm? | days
BTV1 39 33 495 516 10
BTV2 37 24 490 472 7
BTV3 38 27 490 472 7
BTV4 42 33 480 472 7
BTV5 35 27 490 472 8
BTV6 35 28 490 472 7
BTV7 54 34 500 472 7
BTVS8 53 36 500 472 8
Average 41.6 30.2 492 477.5 7.6
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Figure 7. Loading and support arrangement

Figure 8. Torsion arm with a jack and load cell installed (see the solid end of the beam)
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Figure 10. Reinforcement provided in the test span
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Figure 11. Vertical displacement at mid-span
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Figure 12. Longitudinal steel strain ratios
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Figure 13. Transverse steel strain ratios
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loads Lg/L are given in Table 2. A very good agreement
was attained in failure loads. In most cases, the experi-
mental results were slightly larger than the computed
ones. Wide range of T/M and T/, ratios did not result

in large differences between experimental and computa-
tional results.

computed and observed crack patterns of the tested
beams. The first graph in each pair represents the predict-
ed location of cracks and their orientations in the test span
just before failure load. It can be seen that a good agree-
ment was achieved between the experimental and compu-
tational results on the crack concentration and orientation.
All beams failed in a ductile manner as can be seen from

Table 2. Design, experimental and computed failure loads

Beam Ty My Vg Ta/My Tior/ Tshr Le/L,
No. KNm kNm kN Ratio Ratio Ratio
BTV1 13 14.89 21.08 0.87 2.28 0.99
BTV2 13 32.89 41.08 0.4 1.17 1.1
BTV3 13 50.89 61.08 0.26 0.79 1.14
BTV4 13 68.89 81.08 0.19 0.59 1.12
BTV5 26 14.89 21.08 1.75 4.56 0.97
BTV6 26 32.89 41.08 0.79 2.34 0.88
BTV7 39 14.89 21.08 2.62 6.84 1.06
BTV8 39 32.89 41.08 1.19 3.51 1.01

5.2.5 Crack pattern and Mode of Failure

When the principle tensile stress at any point in the
structure exceeds the maximum tensile strength of the
concrete a crack is initiated perpendicular to the direction
of the principle tensile stress. Figure 14 shows typical

figures on displacements and steel ratios (Figs. 11 - 13).
Steel yielded in most cases or reached near yield before
the concrete crushed. The load was transferred from the
concrete to steel at about 35% of failure load. Enough fine
cracks have developed in each case long before major
cracks development near the failure load.

NN
N AN NNK

S

Figure 14a. Computed and observed crack development in the back web (BTV1)
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6. Conclusions

From the results presented in this paper, it can be con-
cluded that the 2-D idealisation of hollow beams using
plane elements is adequate for cross-sections with in-
plane stresses. The 2-D in-house finite element program
used for the non-linear analysis gave good results when
compared with experimental ones. Wide range of ratios of
torsion to bending, T/M, and shear stress due to torsion to
shear stress due to shear force, T,/ g, did not result in
large differences between experimental and computation-
al failure loads.
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