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Abstract: The study of the length of pseudo-random binary sequences generated by Linear-
Feedback Shift Registers (LFSRs) plays an important role in the design approaches of built-in self-
test, cryptosystems, and other applications. However, certain LFSR structures might not be 
appropriate in some situations. Given that determining the length of generated pseudo-random 
binary sequence is a complex task, therefore, before using an LFSR structure, it is essential to 
investigate the length and the properties of the sequence. This paper investigates some conditions 
and LFSR’s structures, which restrict the pseudo-random binary sequences’ generation to a 
certain fixed length. The outcomes of this paper are presented in the form of theorems, 
simulations, and analyses. We believe that these outcomes are of great importance to the 
designers of built-in self-test equipment, cryptosystems, and other applications such as radar, 
CDMA, error correction, and Monte Carlo simulation. 

Keywords: LFSR, Pseudo-random binary sequence, Seed, Feedback connection, Periodicity, 
Exclusive OR. 
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אWLFSR،אאאא،אא،אא،א. 
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1. Introduction 

 Pseudo-Random Binary Sequences 
(PRBSs) have been used for various 
applications. Some of the application areas 
are Built-In Self-Test (BIST) for Very Large 
Scale Integration (VLSI) circuits’ design, 
cryptography applications like stream 
ciphers, and error correction and detection 
codes. In addition, PRBS have been 
commonly used in the fields of digital signal 
processing, wireless communications, direct 
sequence spread spectrum, scrambling 
&descrambling, encryption & decryption, 
steganography, and many more (Williams 
1984; McCluskey 1985, Bardell et al. 1987; 
Nanda et al.  1989, Ahmad 1997; Jamil and 
Ahmad 2002; Ahmad 2005a, 2012, 2013a; 
Hell and Johansson 2008, Mukherjee et al. 
2011 and Ayinala and Parhi2011). 
 Linear Feedback Shift Registers (LFSRs) 
are usually used for generating PRBSs 
(Peterson and Weldon 1984 and Golomb 
1981). In fact, LFSRs have been employed in 
a wide range of applications. This is due to 
several reasons: 1) LFSRs are well-suited to 
hardware implementation, 2) LFSRs can 
produce PRBS with good statistical 
properties, 3) LFSRs can produce sequences 
of large periods with different frequencies, 
and 4) because of their structures; LFSRs can 
be readily analyzed using algebraic 
techniques. However, there are a number of 
design issues that need to be considered 
prior to integrating LFSR to a real 
application. Some of these issues include the 
size of LFSR ‘n’, the seed ‘s’ (ie. initial state 
of the LFSR), feedback connection (FB) in 
the LFSR, and the type of the LFSR (ie. 
internal or external) using exclusive-OR 
‘XOR’ or exclusive-NOR ‘XNOR’. 
 Some structures of LFSRs are constructed 
using internal XNOR model with respect to 
their  periodicity, which  have  been  
analyzed  in (Ahmad and Al-Maashri 2008) 
exploiting the state space model of XNOR 
structures of LFSR (Ahmad 2005b). In this  

 

paper, we consider internal XOR model of 
LFSR structures to study some of the 
conditions, which restrict the LFSR to a 
particular periodicity. Our study is based on 
a derived algebraic modeling of generated 
PRBSs by the LFSR. We further validate our 
results through simulation process. We also 
present a study on randomness criterion of 
those LFSR structures. 
 The rest of this paper is organized as 
appears in Sections 2 - 7. Section 2 
introduces LFSR model.  In Section 3 we 
present the derived algebraic model of an 
LFSR, whereas Section 4 presents the 
analytical study. Simulation model and runs 
are embodied in Section 5, while Section 6 
presents a study on randomness criterion of 
PRBSs. Finally, Section 7 concludes the 
paper and discusses future work. Also, an 
appendix (Appendix A) is provided for the 
abbreviations and terminologies used in this 
paper. 

2. LFSR – An Introduction 

 An LFSR is a special type of Serial-In 
Serial-Out (SISO) shift register that, when  
clocked, advances the signal through the 
register from one bit to the next most-
significant bit. Figure 1 shows an n-bit SISO 
shift register. The key element of SISO shift 
register is D-type Flip-Flops (FFs). The {q1, 
q2, qi, …qn-1, qn} are the states of the flip-
flops {D1, D2, …, Di, … Dn-1,Dn}, respectively.
 SISO shift register has two special 
features: 1) some of the outputs are 
combined internally or externally in 
exclusive-NOR or exclusive-OR 
configuration to form a feedback mechanism 
and 2) it retains the autonomous nature of 
LFSR that is the last output should be part of 
feedback mechanism.  Figure 2 shows an 
external type   XOR structure of an n-bit 
LFSR. The {c0, c1, c2, ….., ci,, …., cn-1, cn}, are 
the possible feedback connections. 
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Figure 1.  An n-bit SISO shift register. 
 

 
Figure 2.    An n-bit LFSR (External XOR type). 

 
Therefore, an LFSR can be formed by either 
performing exclusive-OR or exclusive-NOR 
operations on the combined outputs of two 
or more of the flip-flops. The model for 
exclusive-NOR has been presented in 
(Ahmad and Al-Maashri 2008; Ahmad 
2005b). In this paper, however, our focus 
will be towards presenting an algebraic 
model for an n-bit external exclusive-OR 
type LFSR. 
 In an external exclusive-OR type LFSR, 
the output of the aforementioned operations 
on the combined outputs of two or more of 
the FFs and the result is fed to the least 
significant FF (ie. q1) as shown in Fig. 2.  
Figure 3 shows an example of a 3-bit LFSR, 
which is constructed using external XOR 
functional block. Note how the feedback– 
which is fed as an input to the first FF – is 
the result of exclusive-OR operation of the 
outputs of the second and third FFs. Table 1 
visualizes the operations of the LFSR 
depicted in Fig.  3.  The table elaborates the 
next states (FF1_OUT, FF2_OUT, and  

FF3_OUT) and the output sequence Si. The 
used seed to start the operation is 
considered as q1 (0) = 1, q2 (0) = 0, and q3 (0) 
= 1. 
 It is this feedback function that causes the 
register to loop through repetitive sequences 
of PRBS value. The choice of feedback 
connections, the seed, and the value of ‘n’ 
determine the number of PRBS values in a 
given sequence before the sequence repeats -  

this length is known as periodicity ‘p’ of the 
LFSR (Williams 1984;McCluskey 1985; 
Nanda et al. 1989; Ahmad 1997; Hell and 
Johansson 2008; Mukherjee et al. 2011; 
Ayinala and Parhi2011; Peterson and 

Data In

CLOCK

D1

q1

D2

q2

Di

qi

Dn-1

qn-1

Dn

qn

Data O
ut

...

...

q1 q2 qn

q3 … qn-1

Generated
PRBS

EOR Function Block (External)

c0 c1 c2 ... cn-1 cn

FF1_OUT

D1 q1

FF1

D2 q2

FF2

D2 q2

FF3

FF2_OUT FF3_OUT

C0 C2 C3

Si

Figure 3. A 3-bit LFSR (External XOR type).
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Weldon, Jr. 1984; Golomb 1981; Ahmad and 
Al-Maashri 2008; Ahmad 2005b; Williams et 
al. 1988; Ahmad 1990; Ahmad and Elabdalla 
1997; Ahmad 1994; Knuth 1997; Ahmad et al. 
2002; Ahmad 2002; Krishnaswamy and Pillai 
2012, Peinado and Fuster-Sabater, 2013; 
Chunqiang et al. 2012; Ming-Hung 2013). 

3. LFSR AS PRBS Generator – An 
Algebraic Modeling 

 In this section, we present a generalized 
algebraic model exclusively for an n-bit 
external exclusive-OR type LFSR based 
PRBS generator.  Any binary data sequence 
can be represented in form of polynomial in 
GF(2). Therefore, the feedback connection 
vector for an LFSR can be represented in the 
form of a polynomial and is technically 
known as a characteristic polynomial. Eqn. 
(1) define a general form of a characteristic 
polynomial and let us call it	ࣞ(ݔ). 
(ݔ)ࣞ =෍ܿ௜ × ௜௡ݔ

௜ୀ଴ (1) 
 Let {am}= [a0 , a1 , . . , ai, . .], represent the 
output sequence generated by the LFSR 
used as PRBS, where ai= 0 or 1. Then this 
sequence can be represented as given in 
Eqn. (2). 

(ݔ)ܩ = ෍ ܽ௠ × ௠௡ݔ
௠ୀ଴ 																																																				(2) 

 From the structure of the type of the 
LFSR shown in Fig. 2, it can be seen that if 

the current state of the ith flip-flop is am-i , for 
i = 1, 2 , ... , n , then by the recurrence 
relation an equation can be given as 
depicted in Eqn. (3). 

ܽ௠ =෍ܿ௜ 	×	ܽ௠ିଵ௡
௜ୀଵ 																																																					(3) 

 The generating function(ݔ)ܩ associated 
with the PRBS can be mathematically 
defined as in Eqn. (4). 

i
ii

xaxG ×=∞

=0
)( (4) 

or (ݔ)ܩ 	= ∑ ௜௡ିଵ௜ୀ଴ݔ ∑ ܿ௞ × ∑௜௞ୀ଴(௜ାଵି௞)ݍ ܿ௜ × ௜௡௜ୀ଴ݔ 																	(5) 
or, Eqn. (4) can be rewritten as: ः(ݔ) = (ݔ)ܩ = (ݔ)ࣞ(ݔ)ࣨ 																																									(6) 
The	ࣞ(ݔ) andࣨ(ݔ) can be written in an 
expanded form as described by Eqns. (8) 
and (10), respectively. 

(ݔ)  = ∑ ܿ௜ × ௜௡௜ୀ଴ݔ                                             (7) 

(ݔ)ࣞ  = (ܿ଴ × (଴ݔ + (ܿଵ × (ଵݔ + ⋯+ (ܿ௡ ×  (8)																												௡)ݔ
 
 

 
  

Table 1.Next state sequences (PRBS) for the structure of LFSR of Figure 3. 
 

Clock q1 (FF1_OUT) q2 (FF2_OUT) q3 (FF3_OUT) Si 
0 1 0 1  

 
 

…11101001110 

1 1 1 0 
2 1 1 1
3 0 1 1 
4 0 0 1 
5 1 0 0
6 0 1 0 
7 1 0 1 Repeats 
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or,  
(ݔ)ࣞ  = 1 + (ܿଵ × (ଵݔ + ⋯+ (ܿ௡ ×  ௡)(9)ݔ
(ݔ)ࣨ  = ଴ݔ) × ܿ଴ × (ଵݍ + ଵݔ) × ܿ଴ × ଵݔ)+ (ଶݍ × ܿଵ × (ଵݍ + ଶݔ) × ܿ଴ × ଶݔ)+ (ଷݍ × ܿଵ × (ଶݍ + ଶݔ) × ܿଶ × (ଵݍ + ௡ିଵݔ) +⋯ × ܿ଴ × (௡ݍ + ⋯+ ௡ିଵݔ) × ܿ௡ିଶ × ௡ିଵݔ)	+ (ଶݍ × ܿ௡ିଵݍଵ)																																												(10) 
 

 As an example, let us consider the LFSR 
structure shown in Fig. 3.  In this structure, 
n = 1, q1 (0) = 1, q2 (0) = 0, q3 (0) = 1, c0 = 1, c1 = 
0, c2 = 1and c3 = 1. Hence,ࣨ(ݔ) and ࣞ(ݔ)can  

 

 

 

be derived in the forms of polynomials as 
given in Eqns. (11) and (12) respectively. ࣞ(ݔ) = 1 + (ଶݔ) +  (11)                               (ଷݔ)
(ݔ)ࣨ  = 1 + (ଶݔ) + (ଶݔ) = 1																									(12) 
 Computingः(ݔ) =  we get ,(ݔ)ࣞ/(ݔ)ࣨ
the result as shown in Fig. 4. The quotient of 
this long division process is PRBS in a 
polynomial form. This result is validated by 
crosschecking with those presented in Table 
1. 

 

 

Figure 4. Long-division computation of ः(ݔ) =  .(ݔ)ࣞ/(ݔ)ࣨ

  

.  .   .  .  .  .  . 
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4. Analytical Study  

 This section presents a study on some 
special cases where the LFSRs are restricted 
to generate PRBSs of limited periodicity. 
The study covers the roles of all parameters 
related to the LFSR generating the PRBSs. 
These parameters are ‘n’, ‘seed’ and the 
feedback connection function (‘FB’). The 
value of n may be either even or odd, seed 
may vary from (0)10to (2n-1)10.The FB 
function depends on input connections 
coming from c1, c2, ….., ci,, …., cn-1, cn links to 
the XOR function block. We present the 
results of our study in the forms of theorems 
supported with proofs using algebraic 
model of LFSR presented in Section 
2.Throughout the study, we consider an n-
bit XOR structure of LFSR. 

Theorem 1: 

“If the seed value in the LFSR is 0 (ः = (0)10), 
then for any value of n and for any FB function 
the period ‘p’ of generated PRBS by the LFSR 
will be 1 (p = 1).” 

Proof: 

     Since by substituting (ः = (0)10), in Eqn. 
(5), the equation reduces to a Reduction 
Modular (MOD) equation as given below. 

෍ܿ௜݀݋݉	0	 × ௜௡ݔ
௜ୀ଴ = 0																																						(13) 

      Hence the generated PRBS is	, ः = 0 
which is the seed value. Hence this proves 
that the period ‘p’ of generated PRBS by the 
LFSR is 1. 

Theorem 2: 

“If the seed value in the LFSR is all ones, ः = 
(2n-1)10, where n is odd and FB function is 
considered from all the links [c1, c2, ….., ci,, …., 
cn-1, cn], then the period ‘p’ of generated PRBS by 
the LFSR will be 1 (p = 1).” 

 

 

 

 

Proof: 

Using Eqns. (8) and (9) we can write ࣞ(ݔ) = 1 + (ܿଵ × (ଵݔ + ⋯+ (ܿ௡ × (ݔ)ࣨ ,(௡ݔ = (଴ݔ) + (ଵݔ) + (ଶݔ) + ⋯+  .(௡ିଵݔ)
The result of the long division process of 

Eqn. (14) or Eqn. 15 produces ः(ݔ) = (2n-1)10, 
which proves that the  ‘p’ of  ः(ݔ) can be 
given as: ः(ݔ) = 1 + ݔ +⋯+ ௡ିଵ1ݔ + ݔ +⋯+ ௡ݔ 																															(14) 
or, 

෍ܿ௜ × ௜௡ିଵݔ
௜ୀ଴ ෍ܿ௜݀݋݉	 × ௜௡ݔ

௜ୀ଴ = 			෍ݔ௜௡ିଵ
௜ୀ଴ 									(15) 

The value ∑ ௜௡ିଵ௜ୀ଴ݔ  implicates that the 
generated PRBS by the LFSR structure set in 
Theorem 2 is 1. 

Theorem 3: 

“If the seed value in the LFSR is all ones, ः = 
(2n-1)10, and in the total number of considered 
links in the FB function from the [c1, c2, ….., ci, 
…., cn-1, cn] is odd, then the period ‘p’ of 
generated PRBS by the LFSR will be 1 (p = 1).” 

 

Proof: 

     By substituting the seed value ः = (2n-1)10, 
and inserting FB function for the said 
structure in Theorem 3 in Eqns. (8) and (9) 
we get: ෍ݔ௜௡ିଵ
௜ୀ଴ 1)	݀݋݉ + (௡ݔ = 			෍ݔ௜௡ିଵ

௜ୀ଴ 																		(16) 
 Therefore, the next state of the LFSR will 
be the same as the seed and hence it proves 
that the period of the generated PRBS by the 
LFSR structure of Theorem 3 will be 1, ie. (p 
= 1).
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Theorem 4: 

“If the FB function is considered only from the 
link [cn] and the seed value in the LFSR is any 
value except all zeros, ः = (0)10 or all ones, ः = 
(2n-1)10, then the period ‘p’ of generated PRBS 
by the LFSR will be n (p = n).” 
 
Proof: 

 Let n = 3 and q1 (0) = 1, q2 (0) = 1, and q3 
(0) = 0. Using Equation (9), the 
numeratorࣨ(ݔ) can be computed as ࣨ(ݔ) = 1 +  .ݔ

Therefore, dividing ࣨ(ݔ) byࣞ(ݔ), [ࣞ(ݔ) =1 + (ݔ)ଷ] we get: ःݔ = 1 + ݔ + ଷݔ + ସݔ + ଺ݔ + ଻ݔ + ⋯ =(((1 + (ݔ × (ଷݔ ×   .(ଷݔ
 This demonstrate that the period ‘p’ of 
generated PRBS by the LFSR is 3 (i.e. p = n). 
We can consider any value of n, 
resultingः(ݔ) = (((1 + (ݔ × (௡ݔ ×   .((௡ݔ
Theorem 5: 

“If FB function is considered from all the links 
[c1, c2, ….., ci,, …., cn-1, cn], and the seed value in 
the LFSR is any value except all zeros, ः = (0)10 
or all ones, ः = (2n-1)10, then the period ‘p’ of 
generated PRBS by the LFSR will be n +1 (p = n 
+1).” 

Proof: 

Let n = 3 and q1 (0) = 1, q2 (0) = 1, and q3 (0) = 
0. Using Eqn. (9) the numerator ࣨ(ݔ) can be 
computed asࣨ(ݔ) = 1. Therefore, 
dividingࣨ(ݔ) byࣞ(ݔ), [ࣞ(ݔ) = 1 + ݔ + ଶݔ (ݔ)ଷ] We getःݔ+ = 1 + ݔ + ସݔ + ହݔ + ଼ݔ ଽݔ+ + ⋯	= (((1 + (ݔ × (ସݔ ×   .((ସݔ
 This demonstrates that the period ‘p’ of 
generated PRBS by the LFSR is 3 (ie. p = n). 
We can consider any value of n, resulting ः(ݔ) = (((1 + (ݔ × (௡ାଵݔ ×  .௡ାଵݔ
 
 
 
 

 
 
 
 Theorems 1-5 presented in Section 4 have 
great values. Firstly, from point of view of 
applications of LFSRs and secondly, the 
described theorems shall help in deducing 
the LFSR structures of maximal length 
sequences. Considering the interests of 
practicing engineers, we present Table 2 to 
demonstrate how guidelines and restrictions 
can be ascertained while using LFSRs for its 
practical usage. For demonstrating the 
applicability of Theorems 1 and 3-5, all 
possible LFSR’s structures of order n = 4 are 
considered. Also, the applicability of the 
study helps in searching the generator for 
maximal length sequences. As can be 
visualized from Table 2, for n = 4, there exist 
8 possible FB functions, out of those 8, 5 of 
them have restrictions.  Hence, the search 
set is reduced to 3 as	(1 + ݔ + ସ ),  (1ݔ + ଶݔ ସ), and (1ݔ+ + ଷݔ +  .(ସݔ
 
5. Simulation Model 
 
     A simulation model was developed to 
validate the analytical study presented in 
Section 3. The model was developed in 
MATLAB to simulate the behavior of LFSR 
structures. Figure 5 illustrates the two 
simulation models that were developed to 
validate the theorems. Figure 5a depicts the 
model “prb_single_seed”, which is capable of 
generating PRBS ‘prbs’ as function of 
feedback connection ‘fb’ and seed‘s’. In 
simulation, the length of the generated 
sequence is controlled by a set length ‘l’, 
computed as follows: l = 2*(2n-1). 
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(a) 

 
(b) 

 Figure 5. The two simulation models that are used to validate the theorems presented in  
analytical study. (a) Used to validate the Theorems 1, 2, and 3 (b) Used to validate the 
Theorems 4 & 5.The model “prb_single_seed” is used to validate the theorems 1, 2, and 3.

prb_single_seed

fb s

l

prbs

prb_all_seed

fb

p

 
Table 2.  Demonstrating guideline and restrictions based on Theorem 1–5. 

Study Possible feedback connection functions  
of order 4 (n = 4)  

Comment 

 

ݔ+1 ସ 
ݔ+ݔ+1 ସ 
ݔ+1 ଶ+ݔ ସ 

ݔ+ݔ+1 ଶ+ݔ ସ 
ݔ+1 ଷ+ݔ ସ 

ݔ+ݔ+1 ଷ+ݔ ସ 
ݔ+1 ଶ+ݔ ଷ+ݔ ସ 

ݔ+ݔ+1 ଶ+ݔ ଷ+ݔ ସ 

 

Theorem 1 *G1 *G1 *G1 *G1 *G1 *G1 *G1 *G1 *G1: Guideline 
Do not use ः = (0)10 

Theorem 3 *R3   *R3  *R3 *R3  *R3: Restriction Do not use	ः = (2n-1)10 
Theorem 4 *R4   *R4: Restriction 

Restricts p to p = n for any 
value ofः except as 
restricted by Theorems 1 
and 3 

Theorem 5        *R5 *R5: Restriction 
Restricts p as: p = n + 1 for 
any value ofः except as 
restricted by Theorems 1 
and 3 

Theorem 2 n = 5;  
ଶݔ+ݔ+1 + ଷݔ +  ହݔ +ସݔ

*R2: Restriction 
Restricts p as p = 1 for a 
value ofः,  as ः = (2n-1)10  

n = 7; 1 + ݔ + ଶݔ + ଷݔ +  ଻ݔ + ଺ݔ + ହݔ +ସݔ
n = 9; 1 + ݔ + ଶݔ + ଷݔ + ଻ݔ + ଺ݔ + ହݔ +ସݔ + ଼ݔ +  ଽݔ
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Table 3 shows a representative result set out 
of the simulation results when running the 
model to validate Theorem 1. The table 
demonstrates that for any possible ‘fb’ the 
period of ‘prbs’ is 1. Similarly, Table 4 shows 
the simulation results for validating 
Theorems 2 and 3. 
 To validate Theorems 4 and 5, we use 
another simulation model called 
“prb_all_seed” (see Figure 5b). Unlike the 
model above, “prb_all_seed” examines the 
LFSR structures by generating all possible 
seeds, while requiring only ‘fb’ to compute 
the output p of the function. The sample 
results for the runs are given in Tables 5 and 
6 for validations of Theorems 4 and 5, 
respectively. 
 
 
 

6. Justification of the Study 

 Due to their good statistical properties, 
the LFSRs generating maximal length PRBSs 
are widely used in stream ciphers (Knuth 
1997;  Ahmad et al. 2001). The maximal 
length PRBSs are popularly known as m-
sequence or Pseudo Noise (PN) sequence. 
The maximal length PRBSs have period 
length of 2n-1 (where n is the length of the 
LFSR). Such LFSRs, which generates m-
sequence, are realized when the 
corresponding FB to the LFSR is primitive 
(Peterson and Weldon, Jr. 1984; Golomb 
1981; Ahmad et al. 1990; Ahmad and 
Elabdalla1997; Knuth 1997;  Chunqiang et al. 
2012; Ahmad et. al 2013b; Ming-Hung 2013). 
It is imperative for the designers of crypto 
systems  to   consider   suitable   criteria  

 

Table 3. Results of simulation runs for Theorem 1.
Theorem n  p 

Theorem 1 

2 

Case 1: 
fb=[1,1,1]; s=[0,0]; 
prbs = 
     0     0     0     0     0     0 
 
Case 2: 
fb=[1,0,1]; s=[0,0]; 
prbs= 
     0     0     0     0     0     0 

p = 1 
for all the 

cases 

3 

Case 1: 
fb=[1,1,1,1]; s=[0,0,0]; 
prbs = 
0     0     0     0     0     0     0     0     0     0     0     0     0     0 
 
Case 2: 
fb=[1,0,0,1]; s=[0,0,0]; 
prbs = 
0     0     0     0     0     0     0     0     0     0     0     0     0     0 
 
Case 3: 
fb=[1,0,1,1]; s=[0,0,0]; 
prbs= 
0     0     0     0     0     0     0     0     0     0     0     0     0     0 
 
Case 4: 
fb=[1,1,0,1]; s=[0,0,0]; 
prbs = 
0     0     0     0     0     0     0     0     0     0     0     0     0     0 
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FB = feedback connection; s = seed; PRBS = pseudorandom binary sequence 
 

Table 5.  Results of simulation runs for Theorem 4. 

Theorem n  p 

Theorem 4 
 

2 
FB = [1,0,1]; 
p = 2 

p = n 
for all the 

cases 

3 
FB =[1,0,0,1]; 
p = 3 

5 
FB = [1,0,0,0,0,1];
p = 5 

21 
FB = [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]; 
p = 21 

41 

FB = 
[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,1]; 
p = 41 

FB = feedback connection; p = periodicity 
 
 

FB = feedback connection; p = periodicity 

Table 4.  Results of simulation runs for Theorems 2 and 3. 

Theorem n  p 

Theorem 2 

3 
FB = [1,1,1,1]; s = [1,1,1]; 
PRBS = 
1     1     1     1     1     1     1     1     1     1     1     1    1     1 

p = 1 
for all the 

cases 

5 

FB = [1,1,1,1,1,1]; s = [1,1,1,1,1]; 
PRBS = 
1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1   
1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1   
1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1   
1     1     1     1     1     1     1     1     1     1     1 

Theorem 3 4 

FB = [1,0,1,1,1]; s = [1,1,1,1]; 
PRBS = 
1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1   
1     1     1     1     1     1     1     1     1     1     1     1     1 

Table 6. Results of simulation runs for Theorem 5. 

Theorem n  p 

Theorem 5 
 

16 
FB = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; 
p = 17 

p = n + 1 
for all the 

cases 

32 
FB = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; 
p = 33 

64 

FB = 
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]; 
p = 65 



 
 

On Sequence Lengths of Some Special External Exclusive OR Type LFSR Structures – Study and Analysis 
 
 

11 

for the selection of a key stream generator in 
the design. Some of these design criteria are 
statistical measures, period and linear 
complexity. Acceptable PRBSs should 
exhibit no statistical bias in occurrence of 
individual symbols or small block of 
symbols. In this regard, Golomb’s postulates 
defined in (Ahmad et al. 2002; Ahmad et al. 
2013c; Golomb 1981)suggest that a PRBS 
that passes the tests for randomness will be 
acceptable for the use of cryptosystems and 
other applications like radar, Code Division 
Multiple Access (CDMA), error correction 
and Monte Carlo simulation. For the sake of 
completeness, we list the postulates outlined 
in (Ahmad et al. 2002; Ahmad et al, 
2013c;Golomb 1981); namely, 1) PRBS 
Length, 2) Balance of 1’s and 0’s, 3) Run 
property, and 4) Ideal autocorrelation. 
In this paper, the study of the Theorems 1, 2 
and 3 provide the boundary situations 
where LFSRs lock and fail to generate PRBSs 
of sufficient length. Also LFSR structures 
and seed combinations are to be avoided in 
length.  Because of this, LFSR structures and 
applications of BIST as test pattern 
generators, and in cryptography as key 
generators. 
 To demonstrate the level of prohibitions 
and utilizations of the LFSR structures 
defined in Theorems 4 and 5, we considered 
the criterions of Golomb’s postulates. The 
ratios of the lengths of generated PRBS 
using the generators defined in Theorems 4 
and 5 with respect to the maximal length 
PRBS of 2n-1 (where n is the length of the 
LFSR) are shown in Table 7 for n = {2, 3, 4, 5, 
6, 7, 8, 16, 32, 64, 128}. In the table, R4ml and 
R5ml represent the ratios due to the described 
PRBS generators of Theorems 4 and 5, 
respectively. In addition, Table 7 
demonstrates the balance properties of the 
LFSR structures defined via Theorems 4 and 
5. Moreover, R4mo and R5mo represent the 
ratios due to the described PRBS generators 
of Theorems 4 and 5, respectively, of 
maximum possible number of 1’s. Whereas, 
R4mz and R5mz represent the ratios due to the 
described PRBS generators of Theorems 4 

and 5, respectively, of maximum possible 
number of zeroes. 

7. Conclusion and Future Work 

 PRBS serves an important role in a 
diversified collection of application 
domains; including cryptography and fault 
tolerance. This work has investigated the 
properties of LFSR circuits used for 
generating PRBS periods  and highlighted 
the behavior of some of the LFSR structures. 
The study has employed the recurrence 
relations to describe the PRBS periods 
generated by the LFSR structures. A number 
of theorems have been presented in this 
paper. These theorems summarize the 
observations that were outlined throughout 
the discussion of the analytical model. These 
observations add some knowledge towards 
the generation of maximal length PRBS. The 
theorems and their subsequent outcomes 
were validated using a simulation model. 

The focus of this study was on PRBS 
generation; however, LFSRs could also be 
the building block of other correlation 
functions. As future work, it would be 
interesting to investigate further properties 
and observations on the LFSR circuits that 
could be of use in other application domains 
and functions. 
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Appendix A 

 

List of abbreviations and terminology used in the paper  

 

PRBS  Pseudorandom binary sequence 

BIST  Built-in self-test 

VLSI  Very-large-scale integration 

LFSR  Linear feedback shift register  

XOR  Exclusive-OR 

XNOR  Exclusive-NOR  

SISO   Serial-in serial-out  

n   LFSR size 

ci  The ith feedback connection 

FF  Flip-flop 

qi  The state of the ith FF 

Di  The input to the ith FF 

GF(2)   Galois Field mod 2 

D(x)  Characteristic polynomial of LFSR 

s  Generated PRBS 

Seed  Initial state of LFSR  


