On Directed Edge-Disjoint Spanning Trees in Product Networks, An Algorithmic Approach

A.R. Touzene* and K. Day

Department of Computer Science, College of Science, Sultan Qaboos University, P.O. Box 36, Postal Code 123, Al-Khodh, Muscat, Sultanate of Oman.

Received 11 December 2013; accepted 15 September 2014

Abstract: In (Ku et al. 2003), the authors have proposed a construction of edge-disjoint spanning trees EDSTs in undirected product networks. Their construction method focuses more on showing the existence of a maximum number \((n_1+n_2-1)\) of EDSTs in product network of two graphs, where factor graphs have respectively \(n_1\) and \(n_2\) EDSTs. In this paper, we propose a new systematic and algorithmic approach to construct \((n_1+n_2)\) directed routed EDST in the product networks. The direction of an edge is added to support bidirectional links in interconnection networks. Our EDSTs can be used straightforward to develop efficient collective communication algorithms for both models store-and-forward and wormhole.

Keywords: Product networks, Directed edge-disjoint spanning trees, Interconnection networks.

*Corresponding author’s e-mail: touzene@squ.edu.om
1. Introduction

There has been increasing interest over the last two decades in product networks (Day, and Al-Ayyoub 1997; Ku et al. 2003; X and Yang 2007; Imrich et al. 2008; Klavari and Špacapan 2008; Jánicek et al. 2010; Hammack et al. 2011; Chen et al. 2011; Ma et al. 2011; Cheng et al. 2013; Erveš and Žerovnik 2013; Govorč et al. 2011; Kuškrovski 2014). The Cartesian product is a well-known graph operation. When applied to interconnection networks, the Cartesian product operation combines factor networks into a product network. Graph product is an important method to construct bigger graphs, including enhancing interconnection network fault-tolerance and developing efficient product networks is proposed. In Section 4, we conclude this paper.

2. Notations and Preliminaries

The Cartesian product $G = G_1 \times G_2$ of two undirected graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the undirected graph $G = (V, E)$, where V and E are given by: $V = \{<x_1, x_2> | x_1 \in V_1 \text{ and } x_2 \in V_2\}$, and for any $u = <x_j, y_j>$ and $v = <y_j, y_2>$ in V, (u, v) is an edge in E if, and only if, either (x_j, y_j) is an edge in E_1 and $x_2 = y_2$, or (x_j, y_2) is an edge in E_2 and $x_1 = y_1$. The edge (u, v) is called a G_1-edge if (x_j, y_j) is an edge in G_1, and it is called a G_2-edge if (x_2, y_j) is an edge in E_2. x_1 is called the G_1-component of u and x_2 is called the G_2-component. In all what follows we consider directed edges in the sense that the edge (u, v) is different from the edge (v, u).

3. Construction of EDSTs in a Product Network

Consider two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ having the following properties: the graph G_1 contains n_1 EDST all rooted at x denoted: $X_1(x), X_2(x), \ldots, X_{n_1}(x)$. Each $X_i(x)$ tree is assumed to be formed of an edge (x_i, x_i), where x_i is the ith neighbor of x, and a sub-tree denoted $X_i(x)/x$ rooted at x_i that spans all the G_1 nodes other than x (Fig. 1.a). The graph G_2 contains n_2 EDST all rooted at y denoted: $Y_1(y), Y_2(y), \ldots, Y_{n_2}(y)$. Each $Y_i(y)$ tree is assumed to be formed of an edge (y_j, y_j), where y_j is the jth neighbor of y, and a sub-tree denoted $Y_i(y)/y$ rooted at y_j that spans all the G_2 nodes other than y (figure 1.b). In Fig. 1 (a, b) straight lines correspond to G_1-edges and dashed lines correspond to G_2-edges.
In what follows, we fix a specific node \(<x_0, y_0> \) in \(G \) as a desired root for the EDST to be constructed. We denote by \(<x_i, y_i>, \ i = 1, \ldots, n_1 \), the \(n_1 \) neighbors of \(<x_0, y_0> \) in \(G \) reached from \(<x_0, y_0> \) via \(G_1 \)-edges, and by \(<x_0, y_j>, \ j = 1, \ldots, n_2 \), the \(n_2 \) neighbors of \(<x_0, y_0> \) reached from \(<x_0, y_0> \) via \(G_2 \)-edges. For a given node \(x \) in \(G_1 \) and a given tree \(Y \) in \(G_2 \), we denote by \(<x, Y> \) the tree in \(G_1 \times G_2 \) obtained by fixing the \(G_1 \)-component to \(x \) and following the edges of \(Y \) in \(G_2 \). Similarly, \(<X, Y> \) denotes the tree in \(G_1 \times G_2 \) obtained by following the edges of \(X \) in \(G_1 \) while the \(G_2 \)-component is fixed to node \(y \).

3.1 The \(ST_1 \) and \(ST_2 \) EDST for \(G \)

We present a construction algorithm of \(n_1 + n_2 - 2 \) EDST (without using non-tree edges) for the product graph \(G \). \(n_1 \)-1 EDST for \(G \) denoted \(ST_1(i), \ i = 2, \ldots, n_1 \) and \(n_2 \)-1EDST for \(G \) denoted \(ST_2(j), \ j = 2, \ldots, n_2 \).

3.2 Construction of \(ST_1(i) \), for any \(i \) \(2 \leq i \leq n_1 \)

1. Connect \(<x_0, y_0> \) to its neighbor \(<x_i, y_i> \) (see edge labeled 1 in Fig. 2(a)).
2. Attach to \(<x_i, y_i> \) the sub-tree \(<x_i(x_0)/x_0, y_i(y_0)> \) (see sub-tree labeled 2 in Fig. 2(a)).
3. Connect \(<x_i, y_i> \) to its neighbor \(<x_j, y_j> \) (see edge labeled 3 in Fig. 2(a)).
4. To \(<x_i, y_i> \) attach the sub-tree \(<x_i, Y_i(y_i)/y_i> \) (see sub-tree labeled 4 in Fig. 2(a)).
5. To each node \(<x_i, y_i> \) in the sub-tree \(<x_i, Y_i(y_i)/y_i> \) (including its root \(<x_i, y_i> \)) attach the tree \(<X_i(x_0)/x_0, y_i> \) (see sub-tree labeled 5 in Fig. 2(a)).

6. Connect each node \(<x_i, y_i> \) in the sub-tree \(<x_i, Y_i(y_i)/y_i> \) (including its root \(<x_i, y_i> \)) to its neighbor \(<x_0, y_j> \) (see edge labeled 6 in Fig. 2(a)).

3.3 Construction of the tree \(ST_2(j) \), \(j = 2, \ldots, n_2 \)

1. Connect \(<x_0, y_0> \) to its neighbor \(<x_0, y_j> \) (see edge labeled 1 in Fig. 2(b)).
2. Attach to \(<x_0, y_j> \) the sub-tree \(<x_0, Y_j(y_j)/y_j> \) (see sub-tree labeled 2 in Fig. 2(b)).
3. Connect \(<x_0, y_j> \) to its neighbor \(<x_i, y_j> \) (see edge labeled 3 in Fig. 2(b)).
4. To \(<x_i, y_j> \) attach the sub-tree \(<X_i(x_0)/x_0, y_j> \) (see labeled 4 in Fig. 2(b)).
5. To each node \(<x_i, y_j> \) in the sub-tree \(<X_i(x_0)/x_0, y_j> \) (including its root \(<x_i, y_j> \)) attach the tree \(<X_i(x_0)/x_0, y_j> \) (see sub-tree labeled 5 in Fig. 2(b)).
6. Connect each node \(<x_i, y_j> \) in the sub-tree \(<X_i(x_0)/x_0, y_j> \) (including its root \(<x_i, y_j> \)) to its neighbor \(<x_1, y_0> \) (see edge labeled 6 in Fig. 2(b)). In figure 2(a, b), straight lines are \(G_1 \)-edges and dashed lines are to \(G_2 \)-edges.

Theorem 1: The set \(\{ST_1(i), 2 \leq i \leq n_1\} \cup \{ST_2(j), 2 \leq j \leq n_2\} \) is a family of \((n_1 + n_2 - 2) \) edge-disjoint spanning trees in \(G \).

Proof: We show that all the nodes \(<x, y> \) of the product graph are reached in the \((n_1 + n_2 - 2) \) edge-disjoint spanning tree using different edges.
• Case 1: nodes \(<x_0, y>\) are reached by different \(G_1\)-edges \(\langle x_0, y \rangle, \langle x_0, y \rangle, i = 2, \ldots, n_1\) in the different trees \(ST_1(i)\) (edges labeled 6 in Figure 2(a)). In trees \(ST_2(j), j = 2, \ldots, n_2\), these nodes are covered by \(G_2\)-edges of the sub-trees \(\langle x_0, y_{i_1} \rangle \) (edges labeled 5 in Figure 2(b)).

• Case 2: nodes \(<x, y>\), similar proof as in case 1 (symmetrical).

• Case 3: nodes \(<x, y>, i = 2, \ldots, n_1\) are covered in four different ways:
 1. In sub-trees \(\langle x_i, y_{i_1} \rangle \), \(i = 2, \ldots, n_1\) of trees \(ST_1(i)\) using \(Y_1\) tree edges (labeled 4 in Figure 2(a)).
 2. In sub-tree \(\langle x, y \rangle, j = 2, \ldots, n_2\) of the trees \(ST_2(j)\). These nodes are covered using \(Y_1\) tree edges \(j > 1\), (labeled 5 in Figure 2(b)).
 3. In sub-trees \(\langle x_i, y_{i_1} \rangle \), \(i = 2, \ldots, n_1\), of trees \(ST_1(i)\) using \(X_1\) tree edges (labeled 5 in Figure 2(a)).
 4. In sub-tree \(\langle x_i, y_{i_1} \rangle \), \(j = 2, \ldots, n_2\) of the trees \(ST_2(j)\) using \(X_1\) tree edges (labeled 4 in Figure 2(b)).

• Case 4: nodes \(<x, y>\), similar proof as in case 3 (symmetrical).

• Case 5: nodes \(<x, y>, x \neq x_i, y \neq y_{i_1}\) are covered using different \(G_1\)-edges in sub-trees \(\langle x_i, y_{i_1} \rangle \), \(i = 2, \ldots, n_1\) of trees \(ST_1(i)\) (sub-tree labeled 5 in Figure 2(a)). These nodes are covered using \(G_2\)-edges in the sub-trees \(\langle x_i, y_{i_1} \rangle \), \(j = 2, \ldots, n_2\) in the trees \(ST_2(j)\) (labeled 5 in Figure 2(b)).

3.4 The Special \(T_1\) and \(T_2\) EDSTs for \(G\)

We present a construction algorithm for the directed EDSTs in the product graph \(G\) denoted \(T_1\) and \(T_2\).

3.5 Construction of \(T_1\)

1. Connect \(<x_0, y>\) to its neighbor \(<x_1, y_0>\) (see edge labeled 1 in Figure 3(a)).

2. Attach to \(<x_1, y_0>\) the sub-tree \(<x_i, y_{i_1}>\) (see sub-tree labeled 2 in Figure 3(a)).

3. Connect \(<x_1, y_0>\) to its neighbor \(<x_1, y>\) (see edge labeled 3 in Figure 3(a)).

4. To each node \(<x_1, y>\), \(j = 1, \ldots, n_1\) in the sub-tree \(<x_i, y_{i_1}>\) (including its root \(<x_1, y_1>\) attach the tree \(<x_i, y_{i_1}>\) (see sub-tree labeled 4 in Figure 3(a)).

5. To each node \(<x_1, y>\), \(j = 1, \ldots, n_1\) in the sub-tree \(<x_i, y_{i_1}>\) (including its root \(<x_1, y_1>\) attach the tree \(<x_i, y_{i_1}>\) (see edge labeled 6 in Figure 3(a)).

6. Connect each node \(<x_1, y>\) in the sub-tree \(<x_i, y_{i_1}>\) (including its root \(<x_1, y_1>\) to its neighbor \(<x_0, y>\) (see edge labeled 5 in Figure 3(a)).
3.6 Construction of the Tree T_2

1. Connect node x_i, y_j to its neighbor x_0, y_i (see edge labeled 1 in Fig. 3(b)).
2. Attach to x_0, y_i the sub-tree $x_0, Y_j(y_i)/y_i$ (see sub-tree labeled 2 in Fig. 3(b)).
3. Connect node x_i, y_j to its neighbor x_i, y_i (see edge labeled 3 in Fig. 3(b)).
4. To x_i, y_i attach the sub-tree $X_i(x_i)/x_0, y_i$ (see labeled 4 in Fig. 3(b)).
5. To each node x_i, y_i, $i=1, \ldots, n$ in the sub-tree $X_i(x_i)/x_0, y_i$ (including its root x_i, y_i) attach the tree $x_i, Y_j(y_i)/y_i$ (see sub-tree labeled 5 in Fig. 3(b)).
6. Connect each node x_i, y_j to its neighbor x_0, y_i (including its root x_i, y_j) to its neighbor x_0, y_i (see edge labeled 6 in Fig. 3(a)).
7. Connect each node x_i, y_j to its neighbor x_0, y_i (including its root x_i, y_j) to its neighbor x_0, y_i (see edge labeled 6 in Fig. 3(a)).
8. Connect each node x_i, y_j to its neighbor x_i, y_i (including its root x_i, y_j) to its neighbor x_i, y_i (including its root x_i, y_i) to its neighbor x_0, y_i (see edge labeled 6 in Fig. 3(a)).

Figure 3. Construction of spanning trees T_1 and T_2.

7. Connect each node x_i, y_j in the sub-tree $X_i(x_i)/x_0, y_i$ (including its root x_i, y_j) to its neighbor x_0, y_i (see edge labeled 6 in Fig. 3(a)).

8. Connect each node x_i, y_j in the sub-tree $X_i(x_i)/x_0, y_i$ to the node x_i, y_i (see edge labeled 6 in Fig. 3(a)).
Figure 4. Three EDSTs of the 3-cube and two EDSTs of the ring (3 nodes).
Figure 5 (a). Spanning Tree $ST_1(1)$.

Figure 5 (b). Spanning Tree $ST_1(2)$.

On Directed Edge-Disjoint Spanning Trees in Product Networks An Algorithmic Approach
Figure 5 (c). Spanning Tree $ST_1(3)$.

Figure 5 (d). Spanning Tree $ST_2(1)$.
represent the dimension number relative to the 3-cube, see Figs. 4 and 5. The trees are directed from the root nodes to leave nodes.

4. Conclusions

In this paper, we presented a new systematic and algorithmic approach to construct n_1+n_2 (without using non-tree edges) directed rooted edges-disjoint spanning trees for product networks. The previous work on undirected EDSTs of the product networks (Ku et al. 2003) focuses more on the existence of n_1+n_2-1 but did not provide an explicit algorithmic way for their construction. Our n_1+n_2 EDSTs can be used straight-forward to develop efficient collective communication algorithms for both models store-and-forward and wormhole using bidirectional links.

References

