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Abstract: In (Ku et al. 2003), the authors have proposed a construction of edge-disjoint spanning trees 
EDSTs in undirected product networks.  Their construction method focuses more on showing the 
existence of a maximum number (n1+n2-1) of EDSTs in product network of two graphs, where factor 
graphs have respectively n1 and n2 EDSTs. In this paper, we propose a new systematic and algorithmic 
approach to construct (n1+n2) directed routed EDST in the product networks.  The direction of an edge 
is added to support bidirectional links in interconnection networks.  Our EDSTs can be used straight-
forward to develop efficient collective communication algorithms for both models store-and-forward 
and wormhole.  
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1. Introduction 
 

     There has been increasing interest over the 
last two decades in product networks (Day, and 
Al-Ayyoub 1997; Ku et al. 2003; X and Yang 
2007; Imrich et al. 2008; Klavar and Špacapan 
2008; Jänicke et al. 2010; Hammack et al. 2011; 
Chen et al. 2011; Ma et al. 2011; Cheng et al. 2013; 
Erveš and  Žerovnik 2013; Govorčin and 
Škrekovski 2014). The Cartesian product is a 
well-known graph operation. When applied to 
interconnection networks, the Cartesian product 
operation combines factor networks into a 
product network. Graph product is an 
important method to construct bigger graphs, 
and plays a key role in the design and analysis 
of networks. A number of spanning trees of a 
graph are edge-disjoint if no two trees contain 
the same edge.  Edge-Disjoint spanning trees 
(EDSTs) have many practical applications 
including enhancing interconnection network 
fault-tolerance and developing efficient 
collective communication algorithms in 
distributed memory parallel computers 
(Fragopoulo and Akl 1996; Johnsson and Ho 
1989; Touzene 2003).  In (Ku et al. 2003), the 
authorshave studied construction of maximum 
edge-disjoint spanning trees(n1+n2-1) EDSTs in 
undirected product network of two graphs, 
where factor graphs have respectively n1 and n2 

EDSTs. The presented construction is more 
about showing the existence of a maximum 
number of spanning trees.  They did not provide 
a straight-forward algorithmic way for their 
construction.  In this paper, we propose a new 
systematic and algorithmic approach to 
construct (n1+n2) directed rooted edge-disjoint 
spanning tree in product networks.  We assume 
that the factor graphs are connected graphs and 
have respectively n1 and n2 EDSTs. Directed 
rooted edge-disjoint spanning trees have been 
discussed for different graphs such as the n-
dimensional hypercube (Johnsson and Ho 1989), 
k-ary-n-cube (Touzene 2003), star graphs 
(Fragopoulo and Akl 1996), etc. We assume 
directed edges:  if a and b are two nodes in the 
graph, the edge (a, b) is different from the edge 
(b, a). Directed edges support bidirectional links  
 
 
 

 
 
in interconnection networks.  The advantage of 
our method is the direct use of our trees to 
develop collective communication procedures in 
product interconnection networks.   
The remainder of this paper is organized as 
follows: In Section 2, notations and preliminaries 
are presented. In Section 3, the construction of 
edge-disjoint spanning trees in product 
networks is proposed.  In Section 4, we conclude 
this paper. 
 
2.  Notations and Preliminaries 

 

The Cartesian product G =G1×G2 of two 
undirected graphs G1 = (V1, E1) and G2 = (V2, E2) 
is the undirected graph  G = (V, E), where V and 
E are given by: V= { <x1, x2> | x1∈V1 and x2∈V2}, 
and for any u =<x1, x2> and v = <y1, y2>  in V, (u, 
v) is an edge in E if, and only if, either (x1, y1) is 
an edge in E1 and x2 = y2, or (x2, y2) is an edge in 
E2 and x1 = y1. The edge (u, v) is called a G1-edge 
if (x1, y1) is an edge in G1, and it is called a G2-
edge if (x2, y2) is an edge in E2. x1 is called the G1-
component of u and x2 is called the G2-
component.  In all what follows we consider 
directed edges in the sense that the edge (u, v) is 
different from the edge (v, u). 

 
3. Construction of EDSTs in a Product   

Network 
 

     Consider two graphs G1= (V1, E1) and G2 = 
(V1, E1) having the following properties: the 
graph G1 contains n1 EDST all rooted at x 
denoted: X1(x), X2(x), … , Xn1(x).  Each Xi(x) tree is 
assumed to be formed of an edge (x, xi), where xi 
is the ith neighbor of x, and a sub-tree denoted 
Xi(x)/x rooted at xi that spans all the G1 nodes 
other than x (Fig. 1.a).  The graph G2 contains n2 
EDST all rooted at y denoted: Y1(y), Y2(y), … , 

Yn2(y),  Each Yj(y) tree is assumed to be formed of 
an edge (y, yj), where yj is the jth neighbor of y, 
and a sub-tree denoted Yj(y)/y rooted at yj that 
spans all the G2 nodes other than y (figure 1.b).  
In Fig. 1 (a, b) straight  lines correspond to G1-
edges and dashed lines correspond to G2-edges.
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Xi (x/x)yi(y/y) 

Figure 1.a.  ith EDSTXi (x) rooted at x in G1  Figure 1.b. ith EDST Yi (y) at y in G2 
      and its Xi (x) sub-tree.                                                              and its Yj (y)/y sub-tree. 

 
      In what follows, we fix a specific node <x0, 
y0> in G as a desired root for the EDST to be 
constructed. We denote by <xi, y0>, i = 1,…, n1, 
the n1 neighbors of <x0, y0>in G reached from 
<x0, y0> via G1-edges, and by <x0,yj>, j = 1, …, n2, 
the n2 neighbors of<x0, y0> reached from <x0, 
y0>via G2-edges.  For a given node x in G1 and a 
given tree Y in G2, we denote by <x, Y> the tree 
in G1×G2 obtained by fixing the G1-component to 
x and following the edges of tree Y in G2. 
Similarly, <X, y> denotes the tree in G1×G2 
obtained by following the edges of a tree X in G1 
while the G2-component is fixed to node y. 
 
3.1 The ST1 and ST2 EDST for G 
We present a construction algorithm of n1+n2-2 
EDST (without using non-tree edges (Ku et al. 
2003) for the product graph G:  n1-1 EDST for G 
denoted ST1(i), i = 2.. n1 and n2-1EDST for G 
denoted ST2(j),  j = 2.. n2. 

3.2 Construction of ST1(i), for any i 2 ≤ i ≤ n1 

1. Connect <x0, y0>to its neighbor <xi, y0> 
(see edge labeled 1 in Fig. 2(a)). 

2. Attach to <xi, y0> the sub-tree <Xi(x0)/x0, 
y0>(see sub-tree labeled 2 in Fig. 2(a)). 

3. Connect <xi, y0> to its neighbor <xi, y1> 
(see edge labeled 3 in Fig. 2(a)). 

4. To <xi, y1> attach the sub-tree <xi, 
Y1(y0)/y0>(see sub-tree labeled 4 in Fig. 
2(a)). 

5. To each node <xi, y> in the sub-tree <xi, 
Y1(y0)/y0> (including its root <xi, y1>)  
attach the tree <Xi(x0)/x0, y>(see sub-tree 
labeled 5 in Fig. 2(a)). 
 

 
6. Connect each node <xi, y> in the sub-

tree<xi, Y1(y0)/y0> (including its root <xi, 
y1>) to its neighbor <x0, y1>(see edge 
labeled 6 in Fig. 2(a)). 

3.3 Construction of the tree ST2(j), j=2, .. n2 

1. Connect <x0, y0>to its neighbor <x0, yj> 
(see edge labeled 1 in Fig. 2(b)). 

2. Attach to <x0, yj> the sub-tree 
<x0,Yj(y0)/y0>(see sub-tree labeled 2 in 
Fig. 2(b)). 

3. Connect <x0, yj> to its neighbor <x1, yj> 
(see edge labeled 3 in Fig. 2(b)). 

4. To <x1, yj> attach the sub-tree 
<X1(x0)/x0, yj> (see labeled 4 in Fig. 
2(b)). 

5. To each node <x, yj >in the sub-tree 
<X1(x0)/x0, yj > (including its root <x1, 
yj>) attach the tree <x, Yj(y0)/y0> (see 
sub-tree labeled 5 in Fig. 2(b)). 

6. Connect each node <x, yj >in the sub-
tree<X1(x0)/x0, yj > (including its root 
<x1, yj>) to its neighbor <x1, y0>(see edge 
labeled 6 in figure 2(b)).In figure 2(a, b), 
straight lines are G1-edges and dashed 
lines are to G2-edges. 

 
Theorem 1: The set {ST1(i), 2 ≤ i ≤ n2}∪{ST2(j), 2 ≤ 
j ≤ n2} is a family of (n1+n2-2) edge-disjoint 
panning trees in G = G1×G2. 
Proof: We show that all the nodes <x, y> of the 
product graph are reached in the (n1+n2-2) edge-
disjoint spanning tree using different edges. 
 
 

x 

xi 
y 

Y  

yj 
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Figure 2.  Construction of spanning trees ST1 (i) and ST2 (j). 
 
• Case 1: nodes <x0, y> are reached by 

different G1-edges (<xi, y>, <x0, y>), i = 2, ..., 
n1,  in the different trees ST1(i) (edges 
labeled 6 in figure 2(a)).  In trees ST2(j), j = 2, 
..., n2, these nodes are covered by G2-edges 
of the sub-trees <x0, Yj(y0)/y0> (edges 
labeled 2 in Fig. 2(b)).   

• Case 2: nodes <x, y0>, similar proof as in 
case 1 (symmetrical). 

•  Case 3: nodes <xi, y>, i = 2, ..., n1 are covered 
in four different ways: 
1. In sub-trees <xi, Y1(y0)/y0> , i = 2, ..., n1 of 

trees ST1(i) using Y1 tree edges ( labeled 
4 Fig. 2(a)).  

2. In sub-tree <x, Yj(y0)/y0> , j = 2, ..., n2 of 
the trees ST2(j). These nodes are covered 
using Yj trees edges (j>1),  (labeled 5 in 
Fig. 2(b)). 

3. In sub-trees <Xi(x0)/x0,y>, i = 2, ..., n1of 
trees ST1(j) using Xi tree edges (labeled 5 
in Fig. 2(a)) .  

4. In sub-tree <X1(x0)/x0,yj>j = 2, ..., n2 of 
the trees ST2(j)using X1treeedges(labeled 4 
in Fig. 2(b)).  

• Case 4: nodes <x, yj>, similar proof as in case 
3 (symmetrical). 

• Case 5: nodes <x, y>, x ≠ xi , y ≠yjare covered 
using different G1-edges in  sub-trees 
<Xi(x0)/x0,y>, i = 2, ..., n1 of trees ST1(i) (sub- 

 
tree labeled 5 in Fig. 2(a)). These nodes are 
covered using G2-edges in the sub-trees <x, 
Yj(y0)/y0> , j = 2, ..., n2 in the trees ST2(j) (labeled 
5 in Fig. 2(b)).   
 
3.4  The Special T1 and T2 EDSTs for G 
We present a construction algorithm for the 
directed EDSTs in the product graph G denoted 
T1 and T2. 
 
3.5  Construction of T1 

1. Connect <x0, y0>to its neighbor <x1, 
y0> (see edge labeled 1 in Fig. 3(a)). 

2. Attach to <x1, y0> the sub-tree 
<X1(x0)/x0, y0>(see sub-tree labeled 2 in 
Fig. 3(a)). 

3. Connect <x1, y0> to its neighbor <x1, y1> 
(see edge labeled 3 in Fig. 3(a)). 

4. To <x1, y1> attach the sub-tree <x1, 
Y1(y0)/y0>(see sub-tree labeled 4 in Fig. 
3(a)). 

5. To each node <x1, y/yj>, j=1,…,n2in the 
sub-tree <x1, Y1(y0)/y0> (including its 
root <x1, y1>) attach the tree <X1(x0)/x0, 
y> (see sub-tree labeled 5 in Fig. 3(a)). 

6. Connect each node <x1, y> in the sub-
tree<x1, Y1(y0)/y0> (including its root 
<x1, y1>) to its neighbor <x0, y1>(see edge 
labeled 6 in Fig. 3(a)). 

<x0, y0> 
<x0, y0> 

<x0, y> 

< xi,Y1(y0)/y0>

1

< x0, y> 

<x1, yj> 

<x0, Yj(y0)/y0> 

<x, yj> 2
6

<x, y0> 

<x, Yj(y0)/y0> 

(b) ST2(j), j=2.. n2 

<x0, yj>

5 

3 

4 

 (a) ST1(i), i=2.. n1 

1 

<xi, y0> 

<x, y0> 

<Xi(x0)/x0, y0> 

<xi, y1> 

<Xi(x0)/x0, y> 

<xi, y> 2 6

5 

3

4
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<x0, y0> <x0, y0> 

<X1(x0)/x0 , y1 > 

<x0, y> 

< x1,Y1(y0)/y0> 

1 

< x0, y/y1> 

<x1, y1> 

< x0, Y1(y0)/y0> 

< x, y1> 

2

6 <x, y0> 

<x/xi, Y1(y0)/y0> 

(b) T2 

<x0, y1> 

5 

3 

4 

 (a) T1 

1 

<x1, y0> 

<x/x1, y0 

<X1(x0)/x0, y0> 

<x1, y1> 

< X1(x0)/x0, y/yj > 

<x1, y> 

2 

6 

5 

3 

4 

<x1, y/yj> 

< x/x1, yj > 

< x/xi, y1> 

<xi, y/y1 > 7 7 

Figure 3.  Construction of spanning trees T1 and T2. 

7. Connect each node <x1, y> in the sub-
tree<x1, Y1(y0)/y0> (including its root 
<x1, y1>) to its neighbor <x0, y1>(see edge 
labeled 6 in Fig. 3(a)). 

8. Connect each node <x/x1, y0> in the sub-
tree <X1(x0)/x0, y0> to the node <x/x1, 
yj>(see label 7 in Fig. 3(a)). 

 
3.6 Construction of the Tree T2 

1. Connect <x0, y0>to its neighbor <x0, y1> 
(see edge labeled 1 in Fig. 3(b)). 

2. Attach to <x0, y1> the sub-tree 
<x0,Y1(y0)/y0>(see sub-tree labeled 2 in 
Fig. 3(b)). 

3. Connect <x0, y1> to its neighbor <x1, y1> 
(see edge labeled 3 in Fig. 3(b)). 

4. To <x1, y1> attach the sub-tree 
<X1(x0)/x0, y1>(see labeled 4 in Fig. 3(b)). 

5. To each node <x/xi, y1 >, i=1,…,n1in the 
sub-tree <X1(x0)/x0, y1 > (including its 
root <x1, y1>) attach the tree <x, 
Y1(y0)/y0> (see sub-tree labeled 5 in Fig. 
3(b)). 

6. Connect each node <x, y1 >in the sub-
tree<X1(x0)/x0, y1 > (including its root 
<x1, y1>) to its neighbor <x1, y0>. 

7. Connect each node <x0, y/y1> in the sub-
tree <x0,Y1(y0)/y0>to the node <xi, 
y/y1>(see label 7 in Fig. 3(b)). 

Note that in T1 the edges (<x, y0>, <x, yj>) are 
used but in T2(j), 2 ≤ j ≤ n2 , the opposite 
direction edges (<x, yj>) , <x, y0> ) are use.  
Similarly, in T2 the edges (<x0, y>, <xi, y>) are 
used but in T1(i), 2 ≤ i ≤ n1 , the opposite 
direction  edges (<xi, y>,  <x0, y>) are used.  It is 
easy to see that using a similar proof as in 
Theorem 1, the trees T1 , T2 , ST1(i), 2 ≤ i ≤ n2 and 
T2(j), 2 ≤ j ≤ n2 is a family of (n1+n2) directed 
rooted edge-disjoint spanning trees in G = 
G1×G2. 
To illustrate our construction algorithm, we give 
a complete example of product of two 
interconnection networks the 3-cube (3 directed 
rooted EDTS’s (Johnsson and Ho 1989)) and a 
ring with three nodes (a, b and c) (2 directed 
rooted EDST’s).   Dark circles represents the root 
node of the trees and the numbers on the edges 
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Figure 4.  Three EDSTs of the 3-cube and two EDSTs of the ring (3 nodes). 
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Figure 5 (a).Spanning Tree ST1(1). 
 

 
 

Figure 5 (b).  Spanning Tree ST1(2). 
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Figure 5 (c). Spanning Tree ST1(3). 
 

 
 

Figure 5 (d). Spanning Tree ST2(1). 
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Figure 5 (e). Spanning Tree ST2(2). 
 
represent the dimension number relative to the 
3-cube, see Figs. 4 and 5.  The trees are directed 
from the root nodes to leave nodes. 
 
4. Conclusions 

     In this paper, we presented a new systematic 
and algorithmic approach to construct n1+n2 
(without using non-tree edges) directed rooted 
edges-disjoint spanning trees for product 
networks.  The previous work on undirected 
EDSTs of the product networks (Ku et al. 2003) 
focuses more on the existence of n1+n2-1 but did 
not provide an explicit algorithmic way for their 
construction. Our n1+n2 EDSTs can be used 
straight-forward to develop efficient collective 
communication algorithms for both models 
store-and-forward and wormhole using 
bidirectional links.  
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