
 
The Journal of Engineering Research (TJER) Vol. 13, No. 1 (2016)  88-101 

 

Optimization of Process Design Problems Using 
Differential Evolution Algorithm 

 
A.M. Gujarathia*, G. Vakili-Nezhaada and M. Vatanib 

 
a* Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, 

P.O. Box. 33, Muscat 123, Sultanate of Oman. 
b Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., P.O. Box 15875-

4413,Tehran, Iran. 
 

Received 15 September 2015; Accepted 29 November 2015 
 
Abstract: A modified differential evolution algorithm (MDE) has been used for solving different process 
related design problems (namely calculation of the NRTL and Two-Suffix Margules activity coefficient 
models parameters in 20 ternary extraction systems including different ionic liquids and reactor network 
design problem). The obtained results, in terms of root mean square deviations (rmsd) for these models are 
satisfactory, with the overall values of 0.0023 and 0.0170 for 169 tie-lines for NRTL and Two-Suffix Margules 
models, respectively. The results showed that the MDE algorithm results in better solutions compared to the 
previous work based on genetic algorithm (GA) for correlating liquid-liquid equilibrium (LLE) data in these 
systems. MDE also outperformed DE algorithm when tested on reactor network design problem with 
respect to convergence and speed. 
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Nomenclature 
 
 
List of symbols 
 
A interaction parameter 
CR crossover constant 
F Scaling factor 
Fobj Objective function 
G   Energy parameter 
Gmax maximum number of generations 
K Distribution ratio  
L Molar split ratio 
M Number of tie lines 
NP Population size 
R Universal gas constant 
T Absolute temperature 
x Liquid-phase mole fraction 
Z Overall, or make-up molar fraction 
 
Greek letters 
 
  activity coefficient  
  energy parameter

 
 

α non-randomness parameter 
 
Superscript and Subscripts 
 
cal calculated value 
exp experimental value 
I, II two liquid phases at equilibrium 
i, j, k      component, phase and tie line respectively 
1, 2, 3 aromatic, aliphatic and ionic liquid respectively 
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1. Introduction 
 

Phase equilibria play an important role in the 
synthesis, development, design, and control of 
chemical and petroleum engineering processes. 
Phase behavior is often analyzed using equation of 
state and activity coefficient models. Though lots of 
data is available in literature which correlate both 
the model and experimental data, estimation of 
accurate model parameters still remain a challenge. 
Local optimization methods (such as Newtons 
method or least square techniques, etc.) are often 
used to solve phase equilibrium problems. But 
because the search space is highly nonlinear 
consisting of local and global minima’s, the local 
methods may converge to a local optimum point 
(Stragevitch and Davila 1997;  Sahoo  et al. 2006).  In 
recent past the stochastic optimization techniques 
(such as differential evolution (DE), genetic 
algorithms (GA), simulated annealing (SA), particle 
swarm algorithm, etc.) (Holland 1992; Kirkpatrick 
et al. 1983; Price et al. 2005) have shown 
considerable potential in solving complex 
engineering problems (such as phase equilibrium 
problems, reaction engineering problems, process 
calculations related optimization problems etc.). 
Liquid-Liquid-Equilibrium (LLE) has remained a 
very challenging problem for non-ideal liquid 
solutions such as ionic liquids (ILs). ILs are green 
solvent and they have shown potential applications 
in many separation processes (Lei et al. 2009). For 
designing any separation processes using ionic 
liquids, the accurate estimation of activity 
coefficient parameters is of vital importance. As a 
quick review on these problems we may refer to 
the following works: 
     GA has been utilized for estimation of the 
parameters for two well-known activity coefficient 
models (ie. NRTL and UNIQUAC) (Singh et al. 
2005). They proved that their results were better 
than local search methods. In another study (Sahoo 
et al. 2006; Sahoo et al. 2007), GA was used to 
estimate ternary, quaternary and quinary LLE 
interaction parameters for NRTL and UNIQUAC 
models. It was reported that GA results were better 
than other techniques. Another group of authors 
(Rashtchian et al. 2007) also used a stochastic 
method (genetic algorithm) for phase behavior of 
multiphase and multicomponent systems. They 
calculated the binary interaction parameters of 
UNIQUAC, NRTL and Wilson models for a 
number of systems. They also reported their data 
and compared their data for various systems 
(including vapor liquid equilibrium, vapor-liquid-
liquid equilibrium, and liquid-liquid equilibrium) 
form the literature. In some other studies,  GA was 

successfully applied for estimation of interaction 
parameters of other complex models for systems of 
LLE containing ionic liquids and also for modeling 
of viscosity of crude oil binary blends (Vatani et al. 
2012; Vakili-Nezhaad et al. 2013; Vakili-Nezhaad et 
al. 2014; Al-Maamari et al. 2015). 
     Modified DE algorithm is used for calculation of 
two complex problems. The performance of MDE 
algorithm is also explored by comparing its output 
with other algorithms. Parameters of two activation 
coefficient models (which include NRTL and Two-
Suffix-Margules model) are calculated using 
experimental data having 20 sets of ternary liquid 
systems having 20 different ILs. The reactor 
network problem is also solved and both the speed 
and accuracy aspects of MDE algorithm are 
reported. The statistical parameters of the models 
including root mean square deviation for the above 
mentioned set of ternary systems is reported.  
Comparison of the results obtained using MDE 
with our previous work based on GA (Vatani et al. 
2012) shows that MDE is a very reliable algorithm 
in parameter estimation problems which can give 
more accurate results compared to GA. 
Abbreviation, full names and list of ternary ionic 
liquid systems used in this study is given in Table 
1. 
 
2.  Problem formulation 
 
2.1. The LLE Modeling 
     The LLE modeling is based on thermodynamic 
equilibrium condition for mole fractions and 
activity coefficient between the aliphatic rich phase 
(I) and the IL rich phase (II).  
 

( ) ( )i i i ix x                                                       (1) 

 
     The molar component balances lead to the 
following equation: 
 

(1 )i i iZ x L x L                                                    (2) 

 
where x,  , Z and  L are mole fraction, activity 
coefficient, the overall mole fraction and the molar 
split ratio respectively, and the subscript i denotes 
the components. 
     Considering the distribution ratio of component 
as below: 

i
i

i

x
K

x



                                                                      (3) 

and solving Eq. (3) with Eq. (2), the Rachford–Rice 
equation (Seader and Henley 2006) is concluded as: 



 

 

 

Table 1.  Abbreviation, full name and list of ternary ionic liquid systems used in this work. 
 

Abbreviation Full name of ionic liquid Sys. 
No. 

Name of ternary systems T (K) Tie-
line 

Ref. 

[mebupy][BF4] 4-methyl-N-butylpyridinium tetrafluoroborate 1 propylbenzene(1)+hexadecane(2)+[mebupy][BF4](3) 313.00 10 Alkhaldi et al. 2011 

[3-mebupy][DCA] 3-methyl-N-butyl pyridiniumdicyanamide 2 benzene(1)+hexane(2)+[3-mebupy][DCA](3) 303.15 11 Hansmeier et al. 2010a 

[emim][ESO4] 1-ethyl-3-methylimidazolium ethylsulfate 3 benzene(1)+hexane(2)+[emim][ESO4](3) 313.20 08 García et al. 2009 

[bmim][MSO4] 1-butyl-3-methylimidazolium methylsulfate 4 Benzene(1)+Hexane(2)+[bmim][MSO4](3) 328.20 08 García 2010a 

[bmim][BF4] 1-butyl-3-methylimidazolium tetrafluoroborate 5 Benzene(1)+Heptane(2)+[bmim][BF4](3) 298.15 08 Revelli et al. 2010 

[bmim][NTf2] 1-butyl-3-methylimidazolium bis{trifluoromethylsulfonyl}imide 6 benzene(1)+octane(2)+[bmim][NTf2](3) 298.15 13 Domínguez et al. 2011 

[bmim][PF6] 1-butyl-3-methylimidazolium hexafluorophosphate 7 benzene(1)+Undecane(2)+[bmim][PF6](3) 298.15 05 Maduro and Aznar 2008 

[omim][CL] 1-octyl-3-methylimidazolium chloride 8 benzene(1)+Dodecane(2)+ [omim][CL](3) 298.20 04 Letcher and  Deenadayalu 2003 

[hmim][BF4] 1-hexyl-3-methylimidazolium tetrafluoroborate 9 benzene(1)+Hexadecane(2)+[hmim][BF4](3) 298.20 09 Letcher and Reddy 2005 

[pmim][PF6] 1-propyl-3-methylimidazolium  h 
exafluorophosphate 

10 benzene(1)+Cyclohexane(2)+[pmim][PF6](3) 298.15 08 Zhou et al. 2012 

Ammoeng 102 tetraalkyl ammonium sulfate 11 toluene(1)+heptane(2)+Ammoeng102(3) 298.15 08 Pereiro and Rodriguez 2009 

[bmim][SCN] 1-butyl-3-methylimidazolium thiocyanate 12 Toluene(1)+heptane(2)+[bmim][SCN](3) 303.15 07 Hansmeier et al. 2010b 

[bpy][BF4] N-butylpyridiniumtetrafluoroborate 13 Toluene(1)+heptane(2)+[bpy][BF4](3) 313.20 08 García et al. 2010b 

[EtMe][ImI3] 1-ethyl-3-methylimidazolium triiodide 14 Toluene(1)+heptane(2)+[EtMe][ImI3](3) 318.15 14 Selvan et al. 2000 

[bmim][DCA] 1-butyl-3-methylimidazolium dicyanamide 15 Toluene(1)+heptane(2)+[bmim][DCA](3) 328.15 07 Hansmeier et al. 2010b 

[hmim][TCB] 1-hexyl-3-methylimidazolium tetracyanoborate 16 toluene(1)+methylcyclohexane(2)+[hmim][TCB](3) 293.15 09 Gutierrez et al. 2011 

[bmim][TCB] 1-butyl-3-methylimidazolium tetracyanoborate 17 toluene(1)+methylcyclohexane(2)+[bmim][TCB](3) 313.15 09 Gutierrez et al. 2011 

[omim][PF6] 1-octyl-3-methylimidazolium hexafluorophosphate 18 m-xylene(1)+Nonane(2)+[omim][PF6](3) 298.15 04 Maduro and Aznar 2010 

C2NTf2 ethyl(2-
hydroxyethyl)dimethylammoniumbis{(trifluomethyl)sulfonyl}imide 

19 m-xylene(1)+hexane(2)+[C2NTf2](3) 298.15 10 Dománska et al. 2007 

[dmim][MP] 1,3-dimethylimidazolium methylphosphonate 20 Thiophene(1)+Heptane(2)+[dmim][MP](3) 298.15 09 Revelli et al. 2010 

   Overall   169  
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  0

)1(1
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





i

ii

i KL

KZ
                                              (4) 

 
     Considering Eq. (1), Eq. (3) can be rewritten 

as /i i iK     , where i is proper activity 

coefficient models with an appropriate 
adjustable parameters. 
 
2.2. The NRTL and Two-Suffix Margules 

Models 
     In the present work, the experimental LLE 
data were correlated by NRTL and Two-Suffix 
Margules models (Renon and Prausnitz 1968; 

Prausnitz et al. 1999). The activity coefficient i  

of NRTL model is expressed as: 
 

1 1

1

1 1 1

ln

m m

ji ji j m k kj kjj j ij k
i ijm m m

j

ki k kj k kj k
k k k

G x x Gx G

G x G x G x

 
  



  

   
    

   
 

                                                                               (5) 
 
where the binary interaction Aij, and non-
randomness parameters αij, have been defined 
as: 

ij ij
ij

g A

RT T



  , exp( )ij ij ijG                   (6) 

 
so in general Aii= Ajj=0, Aij ≠ Aji and αij = αji. 
 
     Beside NRTL model, the activity coefficients 
of Two-Suffix Margules model are as below: 
 

2 2
1 12 2 13 3 12 13 23 2 3( )Ln A x A x A A A x x       

                                                                               (7) 
 

2 2
2 12 1 23 3 12 23 13 1 3( )Ln A x A x A A A x x       

                                                                                (8) 
 

2 2
3 13 1 23 2 13 23 12 1 2( )Ln A x A x A A A x x        

                                                                              (9) 
where, A12, A13 and A23 are the interaction 
parameters, which were regressed by ternary 
systems data used in this work.  
 
2.3. Objective Function and Decision 

Variables 
     The single objective optimization study is 
considered. The experimental data for 20 
ternary extraction systems containing different 
ionic liquids are used. NRTL and Two-Suffix 
Margules activity coefficient models parameters 

are estimated using the modified differential 
evolution algorithm. In general, parameter 
estimation is considered as a minimization of an 
objective function value (Fobj) (Revelli et al. 2010), 
which minimizes the deviation between the 
experimental and calculated mole fractions of 
the components. This part of study deals with 
the estimation of thermodynamic activity 
coefficient models parameters for a ternary set 
of systems, accordingly the problem is 
formulated as: 
 

 







 
i j k

cal
kjikjiobj xxFMinimize ,,

exp
,,            (10) 

 
     Lower and uppers bounds of parameters 
used in this work are given in Table 2. The 
criterion  for comparison between the 
experimental and calculated data is given by the 
following equation.  
 

1
2

exp 2( ) / 6cal
ijk ijk

i j k

rmsd x x M
 

  
 
                (11) 

 
where, x and M are mole fraction and the 
number of tie lines and subscripts i, j and k are 
component, phase, and tie lines respectively. 
     In this study Reactor Network Design (RND) 
problem is considered for optimization study. 
RND problem is optimized using variants of 
differential evolution algorithms namely, DE 
and MDE. 
 
2.4. Reactor Network Design Problem:  
     This RND design problem is obtained from 
Ryoo and Sahinidis (Ryoo and Sahinidis 1995) 
(see Fig. 1).  Two CSTR reactors in sequence 
having consecutive reactions (P→Q→R) are 
considered. The intermediate product 
concentration leaving the second reactor is 
maximized in this problem.  
     Both the global and local solutions for this 
problem are reported in literature (Angira 2006; 
Babu and Angira 2006). The problem is 
reformulated by removing the equality 
constraint (Eqs. 12-15):  
 

Maximize.

)1(*)1(
*)1(*)1(

)1(*
)1(*

624513

622511
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
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Table 2.  Interaction parameters values used in present study for the systems. 

 
Component 
i-j 

NRTL Margules 
Aij Aji αij Aij 

1–2 [1, 2500] [-500, 2500] [0.15, 0.5] [-10, 50] 
1–3 [1, 2500] [-500, 2500] [0.15, 0.5] [-10, 50] 
2–3 [1, 2500] [1, 2500] [0.15, 0.5] [-10, 50] 

 

 

Figure 1. Reactor network design problem. 

 

10-5 ≤  x5 ≤  16                                      (14) 
 
10-5 ≤  x6 ≤  16                                     (15)  
 
 where, k11 =0.09755988, k22 =0.99*k1, k13 

=0.0391908, k24 =0.9*k3 

     In this study, DE and MDE algorithms are 
used to solve the reformulated problem.  
 
3. Modified Differential Evolution 

(MDE) 
The survival of the fittest principle is used in 
both DE and MDE. Against DE, MDE maintains 
only one array of variables (bounded by lower 
and upper bounds).  This population gets 
improved if a better candidate solution is 
obtained by allowing new solution to take part 
in the cross over and mutations operations in 
the same generation. Thus it is observed that 
number of function evaluations are lowered 
thus improving the convergence of algorithm. It 
has been found in the previous studies that an 
updating the single array continuously 
enhances the convergence speed leading to less 
function evaluations as compared to DE (Price et 
al. 2005). MDE also offers advantages of one 
array consuming less memory and an 
improvement on CPU time. Premature 
convergence can be avoided by 
wisely/appropriately choosing the key 
parameters of MDE (such as NP, CR and F) (Fan 

and Lampinen 2003; Angira and Babu 2006). 
Both DE and MDE algorithms are widely used 
in the field of non-linear chemical processes, 
computational magnetics, process synthesis and 
design problems, and computational fluid 
dynamics, etc. (Angira and Babu 2006; Angira 
2006; Stumberger et al. 2000;  Colaco et al. 2004). 
Similarly multi-objective optimization strategies 
of differential algorithms are successfully 
applied on selected real world optimization 
problems (such as MOO of LDPE tubular 
reactor, styrene reactor (both adiabatic and 
pseudo-isothermal reactor), PTA oxidation 
process, etc.) (Gujarathi and Babu 2009a; 
Gujarathi and Babu 2009b; Gujarathi and Babu 
2010a; Gujarathi and Babu 2010b; Gujarathi and 
Babu 2011). These MOO strategies of DE 
algorithms are in general found to outperform 
some other existing evolutionary strategies of 
MOO.  
 
4. Results and Discussion 
 
4.1. Effect of Key Parameters (CR, F, and 

NP) 
     Modified differential evolution is a 
population based stochastic type of algorithm. It 
is observed that the outcome of stochastic 
algorithms, in general, depends on its control 
parameters. The performance of DE and MDE 
algorithms depends on key parameters, namely, 
NP, CR, and F. Three systems (System 1, 6 and  

                                                                          
      k11     k13              k22         k24                   
 P           Q          R          P            Q          R  
       
   
  
 
 
  P           P, Q, R Q      P, Q, R 
 

  CP0 = 1          x1 = CP1       x2 = CA2 
           x3 = CQ1       x4 = CB2 
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10) are selected randomly. Table 3 shows the 
parameter values used in this study. All the  
 
Table 3.  Parameter values used in present 

study. 
Parameter Value 
Population size (NP) 120 
Maximum Number of 
generations (Gmax) 

150 

Crossover constant (CR) 0.8 
Scaling Factor (F) Random (0,1) 

 
 
optimization runs were run for 150 numbers of 
generations.  Various optimization runs are 
carried out by judiciously varying these control 
parameters for each of the selected systems.  
Population size is plotted versus objective 
function and is shown through Fig. 2a. There is 
no fixed guideline about the optimum size of 
population. If the population size is too low, it 
becomes difficult for an algorithm to converge  

 

 

 

 
Figure 2.  Effects of control parameters a) Population size; b) Crossover constant; and c) Scaling factor.
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optimally. The computation cost increases by 
increasing the population size. In this 
optimization study, population specific runs are 
carried out by varying the population size for 
each system. Results for three randomly 
selected systems are plotted and shown in Fig. 
2a. Accordingly population size of 120 is 
selected and is used during the optimization 
study in this work. Similarly the crossover 
constant and the scaling factors are also varied 
and results for three randomly selected systems 
are shown in Fig. 2b, and Fig. 2c.  Similar results 
could be obtained for all systems in this work. 
 
4.2. Comparison of MDE, GA and other 

Methods from Literature  
     The MDE algorithm is used to calculate the 
interaction parameters of NRTL and Two-Suffix 
Margules activity coefficient models in LLE 
systems shown in Table 1. Both the optimization 
and model simulation codes are written and 
simulated using MATLAB (2009) software. 
During optimization study, three systems are 
randomly selected to study the effects of 
parameters on objective function. The objective 
function value with respect to generation 
number is plotted for 3 randomly selected 
systems. Fig. 3 shows that irrespective of 
selected system (in this study); the MDE 
algorithm converges to the minimum function 
value in less than 90 generations. However, the 
algorithm is allowed to run for 150 numbers of 
generations to ensure that the optimum is 
reached.  
 

 

Figure 3.  Convergence profile of selected 
systems using MDE. 

 
     Population based stochastic algorithms have 
a typical feature that they start with population 
of points and all the points are expected to 
converge to the optimum points. The results are  
 
 

shown through Table 4 and Table 5. Table 4 
shows the calculated parameters of the 
individual models for each individual system. 
Table 5 shows the  results of rmsd obtained 
using MDE and GA and other methods form 
literature. MDE is able to converge to the global 
optimum having overall rmsd values of 0.0023 
and 0.0170 for NRTL and Two-Suffix Margules 
models.  As an example, the experimental and 
calculated tie-lines were compared in Figs. 4 
and 5 for the system No.1. 
 
4.3. Optimization of CSTR Reactor Design 

Network 
     Table 6 shows the results obtained using DE 
and MDE for the optimization of reactor 
network design problem. Results are shown 
considering average best, worst, mean, median, 
and standard deviation of the optimum values 
of 25 runs. Though the experimental runs are 
taken for 500 numbers of generations, the 
comparison of results is carried out at 
intermediate numbers of functions evaluations 
(FES) ie. FES value of 10000, 15000, 20000, 50000 
and 100000 (Corresponding to 50, 75, 100, 250 
and 500 generations respectively). Taking 
standard deviation to be one of the measures of 
the effectiveness of any algorithm, it is observed 
that MDE produces better results than those 
obtained using DE. The consistency with which 
DE and MDE has performed is evident from the 
fact that standard deviation achieved a value of 
0 (zero) or close to zero. Figure 6 shows that 
error reduces faster in MDE compared to DE. 
Table 7 shows FES, CPU time and function 
value for various problems using strategies of 
DE. MDE algorithm finds the global optimum in 
lesser number of FES than DE. The CPU time 
taken by MDE is much lesser compared to DE.  
 
5.  Conclusion 
 
Binary interaction parameters of two well-
known activity coefficient models are calculated 
for 20 different extraction systems having ILS 
based on flash systems using Modified DE and 
genetic algorithms. The activity coefficient 
models parameters as well as the rmsd have 
been obtained and are reported. The MDE 
algorithm successfully converged to the global 
optimum having rmsd value of 0.0023 and 
0.0170 for NRTL and Two-Suffix Margules 
models respectively for 169 tie-lines. The NRTL 
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Table 4.  The calculated parameters of NRTL and Two-Suffix Margules models for ternary systems 
listed in Table 1. 

 
Sys. No Com. 

i-j 
Genetic Algorithm Differential Evolution (Present study) 
NRTL Margules NRTL Margules 
Aij Aji αij Aij Aij Aji αij Aij 

1 1–2 332.461 -373.942 0.348 0.598 1808.666 245.915 0.318 0.550 
 1–3 1229.120 -0.160 0.317 1.970 2248.897 723.989 0.304 1.912 
 2–3 2446.890 1302.380 0.167 31.003 1631.324 1402.217 0.258 17.380 
2 1–2 391.263 -303.572 0.265 1.260 585.162 1184.298 0.500 3.055 
 1–3 1892.510 -460.185 0.282 2.543 1115.590 1147.705 0.485 4.006 
 2–3 2067.940 494.310 0.160 30.618 1793.492 468.268 0.155 40.318 
3 1–2 1166.300 -291.783 0.202 1.481 1253.989 616.033 0.344 1.481 
 1–3 2287.100 -183.950 0.181 1.954 1770.190 846.111 0.339 1.955 
 2–3 2349.960 1661.440 0.399 7.870 2212.606 1168.640 0.249 7.874 
4 1–2 546.571 -150.197 0.168 2.051 2.051 2.051 2.051 1.481 
 1–3 2299.100 -72.187 0.269 2.227 2.227 2.227 2.227 1.955 
 2–3 2349.940 611.617 0.158 6.263 6.263 6.263 6.263 7.874 
5 1–2 2203.280 152.150 0.319 2.848 1450.995 228.000 0.468 2.848 
 1–3 1414.250 -19.610 0.262 2.880 1199.688 171.480 0.410 2.880 
 2–3 1156.610 902.890 0.199 26.417 1627.191 1495.390 0.476 26.413 
6 1–2 718.490 -350.020 0.156 3.474 822.354 373.761 0.486 3.474 
 1–3 1416.000 -253.554 0.448 3.994 1007.923 237.460 0.490 3.994 
 2–3 1630.430 570.194 0.274 6.982 2182.877 1171.958 0.392 6.982 
7 1–2 1614.230 -317.152 0.202 -3.423 1317.259 348.606 0.393 -3.421 
 1–3 913.786 1647.690 0.340 2.320 886.443 822.118 0.393 2.321 
 2–3 1999.940 1982.020 0.331 0.707 1996.124 780.712 0.393 0.708 
8 1–2 841.486 1596.257 0.353 2.012 1256.108 2131.636 0.290 2.012 
 1–3 1452.005 998.742 0.388 2.173 1431.010 1021.001 0.353 2.173 
 2–3 1316.861 1018.664 0.317 8.219 2079.796 1749.430 0.452 8.219 
9 1–2 741.522 -211.792 0.275 2.111 477.960 2350.571 0.459 2.005 
 1–3 1222.370 549.816 0.480 2.851 1398.317 602.968 0.47 3.208 
 2–3 1672.420 1349.360 0.297 27.852 2126.787 537.834 0.153 50.000 
10 1–2 694.667 -388.136 0.172 3.326 337.318 2191.849 0.478 3.325 
 1–3 1105.550 -134.000 0.430 3.469 987.739 2022.673 0.490 3.468 
 2–3 2200.000 1145.020 0.359 5.085 1920.268 952.934 0.325 5.084 
11 1–2 -204.989 704.990 0.170 2.285 350.795 503.925 0.404 2.285 
 1–3 936.160 635.653 0.479 2.839 879.405 853.769 0.436 2.839 
 2–3 1748.260 791.847 0.329 3.733 2375.034 978.002 0.335 3.733 
12 1–2 -200.378 438.288 0.206 1.854 857.393 623.613 0.392 1.457 
 1–3 1741.060 108.973 0.305 2.443 2084.367 916.730 0.348 2.449 
 2–3 1737.620 956.303 0.163 23.571 2205.090 917.315 0.176 50 
13 1–2 905.115 -272.115 0.171 1.256 1200.128 487.116 0.490 1.226 
 1–3 2499.900 533.974 0.328 2.242 1579.257 635.045 0.376 2.300 
 2–3 1839.160 1450.190 0.238 36.998 2124.391 1261.642 0.246 50.000 
14 1–2 848.574 1072.305 0.455 2.833 665.977 814.838 0.498 2.832 
 1–3 1109.720 1479.689 0.429 3.234 2389.324 944.450 0.393 3.234 
 2–3 2499.746 1320.741 0.360 8.947 2137.053 1261.558 0.340 8.949 
15 1–2 340.847 79.208 0.257 1.580 779.009 610.614 0.468 1.381 
 1–3 1493.610 310.828 0.396 2.485 2036.159 805.412 0.372 2.523 
 2–3 1989.530 720.570 0.161 37.999 1964.976 663.817 0.152 50.000 
16 1–2 674.414 -237.622 0.237 3.003 403.228 1668.606 0.496 3.003 
 1–3 1257.920 -235.265 0.393 3.540 1767.738 1507.400 0.476 3.540 
 2–3 1632.750 644.722 0.347 5.327 2128.587 655.524 0.293 5.326 
17 1–2 736.220 -378.023 0.293 2.718 294.293 1909.581 0.403 2.718 
 1–3 1669.349 -361.050 0.306 2.982 2169.359 1729.861 0.413 2.982 
 2–3 2143.899 436.847 0.240 5.921 1527.369 175.643 0.166 5.921 
18 1–2 2045.840 -190.682 0.174 2.383 1800.158 954.327 0.327 2.383 
 1–3 1122.930 873.039 0.370 2.667 1301.322 1178.783 0.359 2.667 
 2–3 2101.480 1110.080 0.440 4.883 796.140 522.945 0.480 4.882 
19 1–2 719.628 -251.316 0.174 1.428 705.099 325.113 0.418 1.428 
 1–3 1422.290 475.905 0.389 2.730 2364.234 801.241 0.336 2.730 
 2–3 2234.870 829.965 0.221 24.076 2078.687 572.206 0.172 24.083 
20 1–2 -250.213 815.750 0.170 1.880 804.410 744.982 0.425 1.929 
 1–3 2308.960 -96.792 0.187 2.295 1976.340 856.057 0.360 2.325 
  2–3 1943.820 998.124 0.161 35.104 1931.866 1924.642 0.170 42.644 
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Table 5.  The results of rmsd obtained in this work using MDE, GA and other methods in literature. 
 

Sys. No. 

NRTL 

 

Margules  
Literature GA MDE 

This 
work 

GA MDE 
This Work 

1 0.0021 0.0013 0.0006  0.0019 0.0018 
2 0.0155 0.0038 0.0028  0.0179 0.0139 
3 0.0029 0.0008 0.0006  0.0040 0.0040 
4 0.0050 0.0008 0.0011  0.0078 0.0078 
5 0.0236 0.0039 0.0035  0.0073 0.0073 
6 0.0041 0.0024 0.0036  0.0212 0.0212 
7 0.0443 0.0031 0.0013  0.0339 0.0339 
8 0.0020 0.0004 0.0016  0.0088 0.0087 
9 0.0160 0.0059 0.0027  0.0230 0.0227 
10 0.0065 0.0030 0.0029  0.0220 0.0219 
11 0.0280 0.0062 0.0046  0.0339 0.0338 
12 0.0050 0.0018 0.0010  0.0193 0.0184 
13 0.0096 0.0038 0.0010  0.0038 0.0032 
14 0.0145 0.0048 0.0024  0.0184 0.0184 
15 0.0051 0.0027 0.0019  0.0192 0.0187 
16 0.0157 0.0036 0.0037  0.0292 0.0291 
17 0.0188 0.0060 0.0046  0.0273 0.0272 
18 0.0359 0.0051 0.0041  0.0318 0.0317 
19 0.0090 0.0028 0.0011  0.0130 0.0130 
20 0.0108 0.0056 0.0009  0.0035 0.0033 
Overall 0.0159 0.0039 0.0023  0.0195 0.0170 

 
 

Table 6. Results obtained for RND problem using DE and MDE. 
 

Algorithm FES Best Worst Mean Median Std-Dev 

DE 10000 0.388811 0.388453 0.388789 0.388793 1.81E-05 

15000 0.388811 0.388804 0.388811 0.388811 2.46E-07 

20000 0.388811 0.388811 0.388811 0.388811 2.88E-09 

50000 0.388811 0.388811 0.388811 0.388811 0 

100000 0.388811 0.388811 0.388811 0.388811 0 

MDE 10000 0.388811 0.388723 0.388807 0.388806 4.62E-06 

15000 0.388811 0.3811 0.388811 0.388811 2.92E-08 

20000 0.388811 0.388811 0.388811 0.388811 2E-10 

50000 0.388811 0.388811 0.388811 0.388811 0 

100000 0.388811 0.388811 0.388811 0.388811 0 

 

Table 7.  Number of function evaluations (FES), CPU time and function value 
 

Problem  DE MDE 

RND No. of function 
Evaluations 

14283 12699 

CPU Time (s) 3.634823 2.979619 

Function Value (Cost) 0.388811 0.388811 
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Figure 4. Tie-lines for system no. 1, NRTL model, solid lines and full points: predicted tie-lines 
with GA; dashed lines and empty points: predicted tie-lines with MDE. 

 

 

Figure 5. Tie-lines for system no. 1,  Two-Suffix Margules model, solid lines and full points: 
predicted tie-lines with GA; dashed lines and empty points: predicted tie-lines with 
MDE.  

 

 

Figure 6. Error against number of generations for reactor network design problem.
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model outperformed the Two-Suffix Margules 
model by predicting more accurate (with one 
order of magnitude) rmsd values. The results 
obtained in this work using MDE are better 
compared to the results obtained using GA and 
other traditional algorithms. This study can be 
extended for the calculation of some other 
activity coefficient models using similar 
approach.  For   RND  problem  MDE  algorithm  
outperforms DE in terms of number of function 
evaluations.  
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